scholarly journals Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy

Author(s):  
Philip J. Broser ◽  
Roland Schulte ◽  
A. Roth ◽  
Fritjof Helmchen ◽  
Jack Waters ◽  
...  
2004 ◽  
Vol 9 (6) ◽  
pp. 1253 ◽  
Author(s):  
Philip. J. Broser ◽  
R. Schulte ◽  
S. Lang ◽  
A. Roth Fritjof ◽  
Helmchen ◽  
...  

Author(s):  
P.G Young ◽  
T.B.H Beresford-West ◽  
S.R.L Coward ◽  
B Notarberardino ◽  
B Walker ◽  
...  

Image-based meshing is opening up exciting new possibilities for the application of computational continuum mechanics methods (finite-element and computational fluid dynamics) to a wide range of biomechanical and biomedical problems that were previously intractable owing to the difficulty in obtaining suitably realistic models. Innovative surface and volume mesh generation techniques have recently been developed, which convert three-dimensional imaging data, as obtained from magnetic resonance imaging, computed tomography, micro-CT and ultrasound, for example, directly into meshes suitable for use in physics-based simulations. These techniques have several key advantages, including the ability to robustly generate meshes for topologies of arbitrary complexity (such as bioscaffolds or composite micro-architectures) and with any number of constituent materials (multi-part modelling), providing meshes in which the geometric accuracy of mesh domains is only dependent on the image accuracy (image-based accuracy) and the ability for certain problems to model material inhomogeneity by assigning the properties based on image signal strength. Commonly used mesh generation techniques will be compared with the proposed enhanced volumetric marching cubes (EVoMaCs) approach and some issues specific to simulations based on three-dimensional image data will be discussed. A number of case studies will be presented to illustrate how these techniques can be used effectively across a wide range of problems from characterization of micro-scaffolds through to head impact modelling.


1992 ◽  
pp. 237-256 ◽  
Author(s):  
Zvi Kam ◽  
Hans Chen ◽  
John W. Sedat ◽  
David A. Agard

2013 ◽  
Vol 34 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Kazuto Masamoto ◽  
Hiroyuki Takuwa ◽  
Chie Seki ◽  
Junko Taniguchi ◽  
Yoshiaki Itoh ◽  
...  

The present study aimed to determine the spatiotemporal dynamics of microvascular and astrocytic adaptation during hypoxia-induced cerebral angiogenesis. Adult C57BL/6J and Tie2-green fluorescent protein (GFP) mice with vascular endothelial cells expressing GFP were exposed to normobaric hypoxia for 3 weeks, whereas the three-dimensional microvessels and astrocytes were imaged repeatedly using two-photon microscopy. After 7 to14 days of hypoxia, a vessel sprout appeared from the capillaries with a bump-like head shape (mean diameter 14  μm), and stagnant blood cells were seen inside the sprout. However, no detectable changes in the astrocyte morphology were observed for this early phase of the hypoxia adaptation. More than 50% of the sprouts emerged from capillaries 60  μm away from the center penetrating arteries, which indicates that the capillary distant from the penetrating arteries is a favored site for sprouting. After 14 to 21 days of hypoxia, the sprouting vessels created a new connection with an existing capillary. In this phase, the shape of the new vessel and its blood flow were normalized, and the outside of the vessels were wrapped with numerous processes from the neighboring astrocytes. The findings indicate that hypoxia-induced cerebral angiogenesis provokes the adaptation of neighboring astrocytes, which may stabilize the blood–brain barrier in immature vessels.


Sign in / Sign up

Export Citation Format

Share Document