Influence of sea-breeze winds on aerosol particle concentration and size distribution for up to 50-km overland distances in the Middle East

2005 ◽  
Author(s):  
S. Bendersky ◽  
N. Kopeika ◽  
N. Blaunstein
Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 19786 ◽  
Author(s):  
Giovanna Ripamonti ◽  
Leena Järvi ◽  
Bjarke Mølgaard ◽  
Tareq Hussein ◽  
Annika Nordbo ◽  
...  

2021 ◽  
Author(s):  
Fumio Nakazawa ◽  
Kumiko Goto-Azuma

<p>The storage of melted snow and/or ice samples from snow pits and ice cores in a refrigerator for long durations may be limited by an increase in particle concentration caused by microbial growth after approximately 1–2 weeks. In this study, we examined an ultraviolet (UV) disinfection method for the storage of melted snow and/or ice samples. Surface snow obtained from Glacier No. 31 in the Suntar-Khayata Range, eastern Siberia, Russia was divided into two portions for UV treatment and untreated controls. Particle concentrations in the samples were measured using a Coulter counter (Multisizer 4e; Beckman Coulter, USA). Whereas the particle concentration in untreated samples increased, no obvious increase was observed over 53 days in the samples subjected to UV treatment. In addition, the original particle concentrations were unaffected by UV treatment. These findings indicate that the antimicrobial effect of UV radiation is effective for long-term sample storage of melted water samples. A detailed analysis of the particle size distribution for untreated samples indicated that particles of 0.7–1.2 µm appeared within the first 7–14 days. Measurements using a viable particle counter (XL-10BT2 and XL-28A1; RION Co. Ltd., Japan) confirmed that these were biological particles, suggesting that microbial growth occurs during this period. Subsequently, the particles shifted to a smaller size and a higher concentration, suggesting that the decomposition of microorganisms occurred in the water samples. Therefore, the size distribution of particles in untreated samples reflected the growth and decomposition of microorganisms over time.</p>


Sensor Review ◽  
2017 ◽  
Vol 37 (2) ◽  
pp. 196-210 ◽  
Author(s):  
Fangjie Yu ◽  
Yunfei Liu ◽  
Longqing Fan ◽  
Linhua Li ◽  
Yong Han ◽  
...  

Purpose In this paper, a light-weight, low-power atmospheric multi-parameter sensor (AMPS), which could be mounted on small flying platforms such as a tethered balloon, a quad-rotor unmanned aerial vehicle (UAV), a UAV helicopter, etc., is implemented and integrated to sample vertical distribution of aerosols with integrated parameters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. Design/methodology/approach The AMPS integrates three kinds of probes in an embedded system. A synchronous method based on GPS is proposed to drive the laser aerosol particle sensor, the temperature and humidity probe and the pressure probe to sample four channels approximately simultaneously. Different kinds of housing are designed to accommodate various flying platforms, and the weight is controlled to adapt the payload of each platform. Findings A series of validation tests show that while the AMPS achieves high precision, its power consumption is less than 1.3 W, which is essential for light flying platforms. The AMPS was mounted on different flying platforms and the difference was evaluated. For three times every five days, vertical profiles of PM2.5 and PM10 concentrations were observed by the AMPS mounted on a quad-rotor UAV, which revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. Originality/value A new light-weight and low-power AMPS for small flying platforms is designed and tested, which provides an effective way to explore the properties of aerosol vertical distribution, and to monitor pollutants flexibly.


2018 ◽  
Vol 11 (4) ◽  
pp. 2085-2100 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Vladimir Rozanov ◽  
Patricia Liebing ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Information about aerosols in the Earth's atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S) for 10 years (2002–2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A quasi-biannual oscillation (QBO) pattern at upper altitudes (28–32 km) is prominent in the anomalies of the analysed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes, decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.


2012 ◽  
Vol 24 (14) ◽  
pp. 976-984 ◽  
Author(s):  
Bradley J. Ingebrethsen ◽  
Stephen K. Cole ◽  
Steven L. Alderman

Sign in / Sign up

Export Citation Format

Share Document