Aerosol particle concentration and size distribution measurements and modeling in the urban environment for semi-arid and rainy atmospheric conditions

2006 ◽  
Author(s):  
S. Bendersky ◽  
N. Kopeika ◽  
N. Blaunstein
2010 ◽  
Vol 107 (15) ◽  
pp. 6646-6651 ◽  
Author(s):  
A. Metzger ◽  
B. Verheggen ◽  
J. Dommen ◽  
J. Duplissy ◽  
A. S. H. Prevot ◽  
...  

Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 19786 ◽  
Author(s):  
Giovanna Ripamonti ◽  
Leena Järvi ◽  
Bjarke Mølgaard ◽  
Tareq Hussein ◽  
Annika Nordbo ◽  
...  

2021 ◽  
Author(s):  
Fumio Nakazawa ◽  
Kumiko Goto-Azuma

<p>The storage of melted snow and/or ice samples from snow pits and ice cores in a refrigerator for long durations may be limited by an increase in particle concentration caused by microbial growth after approximately 1–2 weeks. In this study, we examined an ultraviolet (UV) disinfection method for the storage of melted snow and/or ice samples. Surface snow obtained from Glacier No. 31 in the Suntar-Khayata Range, eastern Siberia, Russia was divided into two portions for UV treatment and untreated controls. Particle concentrations in the samples were measured using a Coulter counter (Multisizer 4e; Beckman Coulter, USA). Whereas the particle concentration in untreated samples increased, no obvious increase was observed over 53 days in the samples subjected to UV treatment. In addition, the original particle concentrations were unaffected by UV treatment. These findings indicate that the antimicrobial effect of UV radiation is effective for long-term sample storage of melted water samples. A detailed analysis of the particle size distribution for untreated samples indicated that particles of 0.7–1.2 µm appeared within the first 7–14 days. Measurements using a viable particle counter (XL-10BT2 and XL-28A1; RION Co. Ltd., Japan) confirmed that these were biological particles, suggesting that microbial growth occurs during this period. Subsequently, the particles shifted to a smaller size and a higher concentration, suggesting that the decomposition of microorganisms occurred in the water samples. Therefore, the size distribution of particles in untreated samples reflected the growth and decomposition of microorganisms over time.</p>


Author(s):  
Roy M. Harrison ◽  
A. Rob MacKenzie ◽  
Hongming Xu ◽  
Mohammed S. Alam ◽  
Irina Nikolova ◽  
...  

Diesel engine emissions are by far the largest source of nanoparticles in many urban atmospheres, in which they dominate the particle number count, and may present a significant threat to public health. This paper reviews knowledge of the composition and atmospheric properties of diesel exhaust particles, and exemplifies research in this field through a description of the FASTER project (Fundamental Studies of the Sources, Properties and Environmental Behaviour of Exhaust Nanoparticles from Road Vehicles) which studied the size distribution—and, in unprecedented detail, the chemical composition—of nanoparticles sampled from diesel engine exhaust. This information has been systematized and used to inform the development of computational modules that simulate the behaviour of the largely semi-volatile content of the nucleation mode particles, including consequent effects on the particle size distribution, under typical atmospheric conditions. Large-eddy model studies have informed a simpler characterization of flow around the urban built environment, and include aerosol processes. This modelling and engine-laboratory work have been complemented by laboratory measurements of vapour pressures, and the execution of two field measurement campaigns in London. The result is a more robust description of the dynamical behaviour on the sub-kilometre scale of diesel exhaust nanoparticles and their importance as an urban air pollutant.


Sign in / Sign up

Export Citation Format

Share Document