Growth, FT-IR studies, and in-situ growth rate measurements on [100] and [101] faces of KADP mixed crystals from aqueous solution

2009 ◽  
Author(s):  
Hamid Rezagholipour Dizaji ◽  
Zahra Zargar
2002 ◽  
Vol 418 (2) ◽  
pp. 151-155
Author(s):  
A Salifu ◽  
G Zhang ◽  
Edward A Evans

1997 ◽  
Vol 280 (5-6) ◽  
pp. 469-474 ◽  
Author(s):  
Xing-Rong Zeng ◽  
Ke-Cheng Gong ◽  
Ke-Nan Weng ◽  
Wan-Sheng Xiao ◽  
Wen-Hong Gan ◽  
...  

ChemCatChem ◽  
2012 ◽  
Vol 4 (5) ◽  
pp. 624-627 ◽  
Author(s):  
Li Wang ◽  
Qin Xin ◽  
Yue Zhao ◽  
Ge Zhang ◽  
Jie Dong ◽  
...  
Keyword(s):  

2007 ◽  
Vol 91 (19) ◽  
pp. 193102 ◽  
Author(s):  
Itaru Gunjishima ◽  
Takashi Inoue ◽  
Atsuto Okamoto

2008 ◽  
Vol 8 (9) ◽  
pp. 4743-4746 ◽  
Author(s):  
Haldorai Yuvaraj ◽  
Min Hee Woo ◽  
Eun Ju Park ◽  
Yeong-Soon Gal ◽  
Kwon Taek Lim

Poly(3-octylthiophene) (P3OT)-titanium dioxide (TiO2) nanocomposite powder where TiO2 was embedded with homogeneous dispersion was synthesized by in-situ chemical oxidative polymerization of 3-octylthiophene in the presence of TiO2 nanoparticles in supercritical carbon dioxide (scCO2), using ferric chloride as the oxidant. The synthesized materials could be obtained as dry powder upon venting of CO2 after the polymerization. The composites were subsequently characterized by FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray diffraction studies (XRD), thermogravimetric analysis (TGA) and photoluminescence (PL). The incorporation of TiO2 in the composite was endorsed by FT-IR studies. TGA revealed enhanced thermal stability of P3OT/TiO2 nanocomposite compared to 3-octylthiophene. TEM analysis showed that well dispersed TiO2 nanoparticles in the polymer matrix. Photoluminescence quenching increased with increasing TiO2 concentration in the composite.


Sign in / Sign up

Export Citation Format

Share Document