mixed crystals
Recently Published Documents


TOTAL DOCUMENTS

1997
(FIVE YEARS 67)

H-INDEX

65
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
M. B. Shoker ◽  
T. Alhaddad ◽  
O. Pagès ◽  
V. J. B. Torres ◽  
A. V. Postnikov ◽  
...  

AbstractRaman scattering and ab initio Raman/phonon calculations, supported by X-ray diffraction, are combined to study the vibrational properties of Zn1−xBexTe under pressure. The dependence of the Be–Te (distinct) and Zn–Te (compact) Raman doublets that distinguish between Be- and Zn-like environments is examined within the percolation model with special attention to x ~ (0,1). The Be-like environment hardens faster than the Zn-like one under pressure, resulting in the two sub-modes per doublet getting closer and mechanically coupled. When a bond is so dominant that it forms a matrix-like continuum, its two submodes freely couple on crossing at the resonance, with an effective transfer of oscillator strength. Post resonance the two submodes stabilize into an inverted doublet shifted in block under pressure. When a bond achieves lower content and merely self-connects via (finite/infinite) treelike chains, the coupling is undermined by overdamping of the in-chain stretching until a «phonon exceptional point» is reached at the resonance. Only the out-of-chain vibrations «survive» the resonance, the in-chain ones are «killed». This picture is not bond-related, and hence presumably generic to mixed crystals of the closing-type under pressure (dominant over the opening-type), indicating a key role of the mesostructure in the pressure dependence of phonons in mixed crystals.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1368
Author(s):  
Natalia A. Vasilyeva ◽  
Elena B. Rudneva ◽  
Vera L. Manomenova ◽  
Yuriy V. Grigoriev ◽  
Alexey E. Voloshin

The mosaic and radial inhomogeneity of shaped mixed crystals of K2NixCo(1–x)(SO4)2·6H2O (KCNSH) were studied depending on the supercooling of solution, its velocity and its method of supply into the shaper. It was shown that mosaic inhomogeneity could be suppressed when solution is supercooled to about 2 °C. Peripheral supply of the solution (tangential to the wall of the shaper to create a “swirling” flow) with a rate of 55–135 cm/s provides better composition uniformity along the crystal surface in comparison with upright supply of the solution (flow is perpendicular to the crystal surface).


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1356
Author(s):  
László Kovács ◽  
Gábor Corradi

The recent Special Issue on lithium niobate (LiNbO3) is dedicated to Prof. Schirmer and his topics and contains nineteen papers, out of which seven review various aspects of intrinsic and extrinsic defects in single crystals, thin films, and powdered phases; six present brand-new results of basic research, including two papers on Li(Nb,Ta)O3 mixed crystals; and the remaining six are related to various optical and/or thin film applications.


2021 ◽  
Author(s):  
M. B. Shoker ◽  
T. Alhaddad ◽  
O. Pagès ◽  
V. J. B. Torres ◽  
A. V. Postnikov ◽  
...  

Abstract Raman scattering and ab initio Raman/phonon calculations, supported by X-ray diffraction, are combined to study the vibrational properties of Zn1-xBexTe under pressure. The dependence of the Be-Te (distinct) and Zn-Te (compact) Raman doublets that distinguish between Be- and Zn-like environments is examined within the percolation model with special attention to x~(0,1). The Be-like environment hardens faster than the Zn-like one under pressure, resulting in the two sub-modes per doublet getting closer and mechanically coupled. When a bond is so dominant that it forms a matrix-like continuum, its two submodes freely couple on crossing at the resonance, with an effective transfer of oscillator strength. Post resonance the two submodes stabilize into an inverted doublet shifted in block under pressure. When a bond achieves lower content and merely self-connects via (finite/infinite) treelike chains, the coupling is undermined by overdamping of the in-chain stretching until a phonon exceptional point is reached at the resonance. Only the out-of-chain vibrations "survive" the resonance, the in-chain ones are "killed". This picture is not bond-related, and hence presumably generic to mixed crystals of the closing-type under pressure (dominant over the opening-type), indicating a key role of the mesostructure in the pressure dependence of phonons in mixed crystals.


2021 ◽  
Vol 271 ◽  
pp. 115305
Author(s):  
J. Zakrzewski ◽  
M. Maliński ◽  
A. Bachiri ◽  
K. Strzałkowski

Author(s):  
Marek Gorgol ◽  
Radosław Zaleski ◽  
Agnieszka Kierys ◽  
Daniel Kamiński ◽  
Karol Strzałkowski ◽  
...  

Positron annihilation lifetime spectroscopy was used to examine grown-in defects in Cd1–x Zn x Te mixed crystals as a function of Zn content (x = 0, 0.07, 0.11, 0.49, 0.9, 0.95, 1) and measuring temperature. All samples were prepared using the high-pressure modified vertical Bridgman–Stockbarger method. The crystal structure and material phase were characterized by X-ray diffraction. The positron lifetime spectra reveal the presence of both open volumes and shallow traps regardless of the sample composition. In particular, both average and bulk lifetimes are found to be much higher in ternary alloys (CdZnTe) than those in binary systems (CdTe and ZnTe). This originates from distinct differences in average electron densities and the nature of open-volume defects between binary and ternary samples. Competition in positron trapping with increasing Zn content is observed between defects characteristic for both structural systems. Moreover, a clear correlation is shown between defects and the lattice thermal conductivity of studied samples. The applicability of the positron trapping model to CdTe-based materials is discussed.


2021 ◽  
Vol 66 (4) ◽  
pp. 341
Author(s):  
A.I. Pogodin ◽  
V.I. Studenyak ◽  
M.Y. Filep ◽  
O.P. Kokhan ◽  
I.P. Studenyak ◽  
...  

Impedance measurements of (Cu1−xAgx)7GeS5I mixed crystals are carried out in the frequency range from 10 Hz to 300 kHz and in the temperature interval 292–383 K. The temperature and frequency dependences of the electrical conductivity for (Cu1−xAgx)7GeS5I mixed crystals are studied. Based on the analysis of Nyquist plots and using the electrode equivalent circuits, the values of ionic and electronic components of the electrical conductivity are determined. The compositional behavior of the ionic and electronic conductivities, as well as the compositional behavior of their activation energies, are discussed. The ratio of ionic and electronic components of the conductivity for (Cu1−xAgx)7GeS5I mixed crystals was analyzed.


2021 ◽  
Author(s):  
Alejandro R. Goñi ◽  
Adrián Francisco-López ◽  
Bethan Charles ◽  
Ma. Isabel Alonso ◽  
Miquel Garriga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document