Analyzing time series of vegetation index and land cover for vegetation change detection over continental U.S.

2009 ◽  
Author(s):  
Di Wu ◽  
John J. Qu ◽  
Lingli Wang ◽  
Xianjun Hao
Author(s):  
Djamel Bouchaffra ◽  
Faycal Ykhlef

The need for environmental protection, monitoring, and security is increasing, and land cover change detection (LCCD) can aid in the valuation of burned areas, the study of shifting cultivation, the monitoring of pollution, the assessment of deforestation, and the analysis of desertification, urban growth, and climate change. Because of the imminent need and the availability of data repositories, numerous mathematical models have been devised for change detection. Given a sample of remotely sensed images from the same region acquired at different dates, the models investigate if a region has undergone change. Even if there is no substantial advantage to using pixel-based classification over object-based classification, a pixel-based change detection approach is often adopted. A pixel can encompass a large region, and it is imperative to determine whether this pixel (input) has changed or not. A changed image is compared to the available ground truth image for pixel-based performance evaluation. Some existing change detection systems do not take into account reversible changes due to seasonal weather effects. In other words, when snow falls in a region, the land cover is not considered as a change because it is seasonal (reversible). Some approaches exploit time series of Landsat images, which are based on the Normalized Difference Vegetation Index technique. Others evaluate built-up expansion to assess urban morphology changes using an unsupervised approach that relies on labels clustering. Change detection methods have also been applied to the field of disaster management using object-oriented image classification. Some methodologies are based on spectral mixture analysis. Other techniques invoke a similarity measure based on the evolution of the local statistics of the image between two dates for vegetation LCCD. Probabilistic approaches based on maximum entropy have been applied to vegetation and forest areas, such as Hustai National Park in Mongolia. Researchers in this field have proposed an LCCD scheme based on a feed-forward neural network using backpropagation for training. This paper invokes the new concept of homology theory, a subfield of algebraic topology. Homology theory is incorporated within a Structural Hidden Markov Model.


2021 ◽  
Vol 117 (7/8) ◽  
Author(s):  
Nndanduleni Muavhi

This study presents a simple approach of spatiotemporal change detection of vegetation cover based on analysis of time series remotely sensed images. The study was carried out at Thathe Vondo Area, which is characterised by episodic variation of vegetation gain and loss. This variation is attributable to timber and tea plantations and their production cycles, which periodically result in either vegetation gain or loss. The approach presented here was implemented on two ASTER images acquired in 2007 and 2017. It involved the combined use of band combination, unsupervised image classification and Normalised Difference Vegetation Index (NDVI) techniques. True colour composite (TCC) images for 2007 and 2017 were created from combination of bands 1, 2 and 3 in red, blue and green, respectively. The difference image of the TCC images was then generated to show the inconsistencies of vegetation cover between 2007 and 2017. For analytical simplicity and interpretability, the difference image was subjected to ISODATA unsupervised classification, which clustered pixels in the difference image into eight classes. Two ISODATA derived classes were interpreted as vegetation gain and one as vegetation loss. These classes were confirmed as regions of vegetation gain and loss by NDVI values of 2007 and 2017. In addition, the polygons of vegetation gain and loss regions were created and superimposed over the TCC images to further demonstrate the spatiotemporal vegetation change in the area. The vegetation change statistics show vegetation gain and loss of 10.62% and 2.03%, respectively, implying a vegetation gain of 8.59% over the selected decade.


2021 ◽  
Vol 13 (19) ◽  
pp. 3951
Author(s):  
Kim André Vanselow ◽  
Harald Zandler ◽  
Cyrus Samimi

Greening and browning trends in vegetation have been observed in many regions of the world in recent decades. However, few studies focused on dry mountains. Here, we analyze trends of land cover change in the Western Pamirs, Tajikistan. We aim to gain a deeper understanding of these changes and thus improve remote sensing studies in dry mountainous areas. The study area is characterized by a complex set of attributes, making it a prime example for this purpose. We used generalized additive mixed models for the trend estimation of a 32-year Landsat time series (1988–2020) of the modified soil adjusted vegetation index, vegetation data, and environmental and socio-demographic data. With this approach, we were able to cope with the typical challenges that occur in the remote sensing analysis of dry and mountainous areas, including background noise and irregular data. We found that greening and browning trends coexist and that they vary according to the land cover class, topography, and geographical distribution. Greening was detected predominantly in agricultural and forestry areas, indicating direct anthropogenic drivers of change. At other sites, greening corresponds well with increasing temperature. Browning was frequently linked to disastrous events, which are promoted by increasing temperatures.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2018 ◽  
Vol 10 (8) ◽  
pp. 1251 ◽  
Author(s):  
Boyu Liu ◽  
Jun Chen ◽  
Jiage Chen ◽  
Weiwei Zhang

Spectral and NDVI values have been used to calculate the change magnitudes of land cover, but may result in many pseudo-changes because of inter-class variance. Recently, the shape information of spectral or NDVI curves such as direction, angle, gradient, or other mathematical indicators have been used to improve the accuracy of land cover change detection. However, these measurements, in terms of the single shape features, can hardly capture the complete trends of curves affected by the unsynchronized phenology. Therefore, the calculated change magnitudes are indistinct such that changes and no-changes have a low contrast. This problem has prevented traditional change detection methods from achieving a higher accuracy using bi-temporal images or NDVI time series. In this paper, a multiple shape parameters-based change detection method is proposed by combining the spectral correlation operator and the shape features of NDVI temporal curves (phase angle cumulant, baseline cumulant, relative cumulation rate, and zero-crossing rate). The change magnitude is derived by integrating all the inter-annual differences of these shape parameters. The change regions are discriminated by an automated threshold selection method known as histogram concavity analysis. The results showed that the mean differences in the change magnitudes of the proposed method between 2100 changed and 2523 unchanged pixels was 32%, the overall accuracy was approximately 88%, and the kappa coefficient was 0.76. A comparative analysis was conducted with bi-temporal image-based methods and NDVI time series-based methods, and we demonstrate that the proposed method is more effective and robust than traditional methods in achieving high-contrast change magnitudes and accuracy.


Author(s):  
Willem C. Olding ◽  
Jan C. Olivier ◽  
Brian P. Salmon ◽  
Waldo Kleynhans

Sign in / Sign up

Export Citation Format

Share Document