Study on the spectrum reconstruction and relative radiometric calibration of interference imaging spectrometer

2009 ◽  
Author(s):  
Lele Yao ◽  
Wei Zhao ◽  
Shiming Fan
2021 ◽  
Author(s):  
Kerry Meyer ◽  
Steven Platnick ◽  
Robert Holz ◽  
Steven Ackerman ◽  
Andrew Heidinger ◽  
...  

<p>The Suomi NPP and JPSS series VIIRS imagers provide an opportunity to extend the NASA EOS Terra (20+ year) and Aqua (18+ year) MODIS cloud climate data record into the new generation NOAA operational weather satellite era. However, while building a consistent, long-term cloud data record has proven challenging for the two MODIS sensors alone, the transition to VIIRS presents additional challenges due to its lack of key water vapor and CO<sub>2</sub> absorbing channels available on MODIS that are used for high cloud detection and cloud-top property retrievals, and a mismatch in the spectral location of the 2.2µm shortwave infrared channels on MODIS and VIIRS that has important implications on inter-sensor consistency of cloud optical/microphysical property retrievals and cloud thermodynamic phase. Moreover, sampling differences between MODIS and VIIRS, including spatial resolution and local observation time, and inter-sensor relative radiometric calibration pose additional challenges. To create a continuous, long-term cloud climate data record that merges the observational records of MODIS and VIIRS while mitigating the impacts of these sensor differences, a common algorithm approach was pursued that utilizes a subset of spectral channels available on each imager. The resulting NASA CLDMSK (cloud mask) and CLDPROP (cloud-top and optical/microphysical properties) products were publicly released for Aqua MODIS and SNPP VIIRS in early 2020, with NOAA-20 (JPSS-1) VIIRS following in early 2021. Here, we present an overview of the MODIS-VIIRS CLDMSK and CLDPROP common algorithm approach, discuss efforts to monitor and address relative radiometric calibration differences, and highlight early analysis of inter-sensor cloud product dataset continuity.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 2179 ◽  
Author(s):  
Peng Zhang ◽  
Naimeng Lu ◽  
Chuanrong Li ◽  
Lei Ding ◽  
Xiaobing Zheng ◽  
...  

Climate observations and their applications require measurements with high stability and low uncertainty in order to detect and assess climate variability and trends. The difficulty with space-based observations is that it is generally not possible to trace them to standard calibration references when in orbit. In order to overcome this problem, it has been proposed to deploy space-based radiometric reference systems which intercalibrate measurements from multiple satellite platforms. Such reference systems have been strongly recommended by international expert teams. This paper describes the Chinese Space-based Radiometric Benchmark (CSRB) project which has been under development since 2014. The goal of CSRB is to launch a reference-type satellite named LIBRA in around 2025. We present the roadmap for CSRB as well as requirements and specifications for LIBRA. Key technologies of the system include miniature phase-change cells providing fixed-temperature points, a cryogenic absolute radiometer, and a spontaneous parametric down-conversion detector. LIBRA will offer measurements with SI traceability for the outgoing radiation from the Earth and the incoming radiation from the Sun with high spectral resolution. The system will be realized with four payloads, i.e., the Infrared Spectrometer (IRS), the Earth-Moon Imaging Spectrometer (EMIS), the Total Solar Irradiance (TSI), and the Solar spectral Irradiance Traceable to Quantum benchmark (SITQ). An on-orbit mode for radiometric calibration traceability and a balloon-based demonstration system for LIBRA are introduced as well in the last part of this paper. As a complementary project to the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and the Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS), LIBRA is expected to join the Earth observation satellite constellation and intends to contribute to space-based climate studies via publicly available data.


1988 ◽  
Author(s):  
James E. Conel ◽  
Robert O. Green ◽  
Ronald E. Alley ◽  
Carol J. Bruezte ◽  
Veronique Carrere ◽  
...  

2013 ◽  
Vol 51 (8) ◽  
pp. 4388-4396 ◽  
Author(s):  
Andrea Monti Guarnieri ◽  
Stefano Tebaldini ◽  
Davide Giudici ◽  
Pietro Guccione

2012 ◽  
Vol 5 (2) ◽  
pp. 2221-2271
Author(s):  
P. Liebing ◽  
K. Bramstedt ◽  
S. Noël ◽  
V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. SCIAMACHY is a passive imaging spectrometer onboard ENVISAT, designed to obtain trace gas abundances from measured radiances and irradiances in the UV to SWIR range in nadir, limb and occultation viewing modes. Its grating spectrometer introduces a substantial sensitivity to the polarization of the incoming light with nonnegligible effects on the radiometric calibration. To be able to correct for the polarization sensitivity, SCIAMACHY utilizes broadband Polarization Measurement Devices (PMDs). While for the nadir viewing mode the measured atmospheric polarization has been validated against POLDER data (Tilstra and Stammes, 2007, 2010), a similar validation study regarding the limb viewing mode has not yet been performed. This paper aims at an assessment of the quality of the SCIAMACHY limb polarization data. Since limb polarization measurements by other air- or spaceborne instruments in the spectral range of SCIAMACHY are not available, a comparison with radiative transfer simulations by SCIATRAN V3.1(Rozanov et al., 2012) using a wide range of atmospheric parameters is performed. SCIATRAN is a vector radiative transfer model (VRTM) capable of performing calculations of the multiply scattered radiance in a~spherically symmetric atmosphere. The study shows that the limb polarization data exhibit a large systematic bias which is decreasing with wavelength. The most likely reason for this bias is an instrumental phase shift which changes the relative contributions of different Stokes vector components to the PMD signal as compared to on-ground calibration measurements. It is also shown that it is in principle feasible to recalibrate the polarization sensitivity using the in-flight data and the VRTM simulations, enabling also the monitoring of its degradation. Together with an optimization of the algorithm used to calculate the in-flight polarization data an improved polarization correction can increase the radiometric accuracy of SCIAMACHY limb radiance spectra substantially.


2013 ◽  
Vol 6 (6) ◽  
pp. 1503-1520 ◽  
Author(s):  
P. Liebing ◽  
K. Bramstedt ◽  
S. Noël ◽  
V. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. SCIAMACHY is a passive imaging spectrometer onboard ENVISAT designed to obtain trace gas abundances from measured radiances and irradiances in the UV to SWIR range in nadir-, limb- and occultation-viewing modes. Its grating spectrometer introduces a substantial sensitivity to the polarization of the incoming light with nonnegligible effects on the radiometric calibration. To be able to correct for the polarization sensitivity, SCIAMACHY utilizes broadband Polarization Measurement Devices (PMDs). While for the nadir-viewing mode the measured atmospheric polarization has been validated against POLDER data (Tilstra and Stammes, 2007, 2010), a similar validation study regarding the limb-viewing mode has not yet been performed. This paper aims at an assessment of the quality of the SCIAMACHY limb polarization data. Since limb polarization measurements by other air/spaceborne instruments in the spectral range of SCIAMACHY are not available, a comparison with radiative transfer simulations by SCIATRAN V3.1 (Rozanov et al., 2013) using a wide range of atmospheric parameters is performed. SCIATRAN is a vector radiative transfer model (VRTM) capable of performing calculations of the multiply scattered radiance in a spherically symmetric atmosphere. The study shows that the limb polarization data exhibit a large time-dependent bias that decreases with wavelength. Possible reasons for this bias are a still unknown combination of insufficient accuracy or inconsistencies of the on-ground calibration data, scan mirror degradation and stress induced changes of the polarization response of components inside the optical bench of the instrument. It is shown that it should in principle be feasible to recalibrate the effective polarization sensitivity of the instrument using the in-flight data and VRTM simulations.


Sign in / Sign up

Export Citation Format

Share Document