spectral irradiance
Recently Published Documents


TOTAL DOCUMENTS

736
(FIVE YEARS 123)

H-INDEX

55
(FIVE YEARS 3)

Metrologia ◽  
2022 ◽  
Author(s):  
Caihong Dai ◽  
Yanfei Wang ◽  
Ling Li ◽  
Zhi-feng Wu ◽  
Yihang Xie ◽  
...  

Abstract Spectral irradiance scale in the wavelength range from 250 nm to 2500 nm was realized at National Institute of Metrology (NIM) on the basis of a large area tungsten carbide–carbon (WC-C) high temperature fixed point blackbody, which is composed of a 14 mm diameter WC-C fixed point cell and a variable temperature blackbody BB3500MP as a furnace. A series of 1000 W FEL tungsten halogen lamps were used as transfer standards. The new spectral irradiance scale was compared with the scale based on a variable-temperature blackbody BB3500M, and the divergence between these two methods varied from -0.66% to 0.79% from 280 nm to 2100 nm. The measurement uncertainty of spectral irradiance scale based on fixed-point blackbody was analyzed, and the expanded uncertainty was estimated as 3.9% at 250 nm, 1.4% at 280 nm, 0.43 % at 400 nm, 0.27% at 800 nm, 0.25% at 1000 nm, 0.62% at 1500 nm, 0.76% at 2000 nm, and 2.4% at 2500 nm respectively. In the range from 300 nm to 1000 nm the fixed-point scale was improved obviously: the uncertainty decreased by more than 25% compared to the uncertainty based on the variable temperature blackbody. Below 300 nm, the uncertainty became higher because the signal to noise ratio was poor. Above 1100 nm, the contribution of temperature measurement to the uncertainty of spectral irradiance decreases, therefore the uncertainties of two methods are almost at the same level. The fixed-point blackbody was also used to realize the correlated colour temperature and distribution temperature of a tungsten filament lamp, the deviation from the variable temperature blackbody method was -0.5 K and -2.9 K, respectively.


2022 ◽  
Vol 2149 (1) ◽  
pp. 012008
Author(s):  
Philipp Schneider ◽  
Saulius Nevas ◽  
Detlef Lindner ◽  
Lutz Werner ◽  
Ulrike Linke ◽  
...  

Abstract A modular photometric trap detector system has recently been developed at Physikalisch-Technische Bundesanstalt (PTB). All parts of the detector are now completely calibrated. The new planned traceability chain for the realisation of luminous intensity unit can therefore be established for the first time. This contribution shows the results of the individual calibration steps including the associated measurement uncertainties and correlations. A major part of the calibrations along the traceability chain is done at the upgraded measurement setup TULIP (TUnable Lasers In Photometry). The improvements of the TULIP setup are presented and the effects on the measurement uncertainty are shown. The result of the first complete calibration according to the new traceability chain is compared to previous calibration results both in terms of spectral irradiance responsivity and luminous responsivity. The further steps required towards implementing the new traceability chain and the possible implications are discussed.


2022 ◽  
Vol 2149 (1) ◽  
pp. 012005
Author(s):  
A Gamouras ◽  
D J Woods ◽  
É Côté ◽  
A A Gaertner

Abstract The National Research Council (NRC) of Canada has been working to establish new facilities and to improve measurement capabilities traceable to the International System of Units (SI units) in optical radiometry. The NRC primary spectral irradiance scale has transitioned from a detector-based approach in the range of 700 nm to 1600 nm to a detector and source-based realization from 250 nm to 2500 nm. A high temperature blackbody (HTBB) acts as the primary light source for the calibration of 1000 W FEL spectral irradiance standard lamps. The thermodynamic temperature of the HTBB is determined using an NRC-designed wide-band filter radiometer, with spectral responsivity SI-traceable to the NRC optical power scale. This new facility has significantly improved measurement uncertainties compared to the previous NRC spectral irradiance scale.


2022 ◽  
Vol 316 ◽  
pp. 125816
Author(s):  
Johannes Mirwald ◽  
Drilon Nura ◽  
Lukas Eberhardsteiner ◽  
Bernhard Hofko

2022 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Mustapha Meftah ◽  
Fabrice Boust ◽  
Philippe Keckhut ◽  
Alain Sarkissian ◽  
Thomas Boutéraon ◽  
...  

INSPIRE-SAT 7 is a French 2-Unit CubeSat (11.5 × 11.5 × 22.7 cm) primarily designed for Earth and Sun observation. INSPIRE-SAT 7 is one of the missions of the International Satellite Program in Research and Education (INSPIRE). Twice the size of a 4 × 4 Rubik’s Cube and weighing about 3 kg, INSPIRE-SAT 7 will be deployed in Low Earth Orbit (LEO) in 2023 to join its sister satellite, UVSQ-SAT. INSPIRE-SAT 7 represents one of the in-orbit demonstrators needed to test how two Earth observation CubeSats in orbit can be utilized to set up a satellite constellation. This new scientific and technological pathfinder CubeSat mission (INSPIRE-SAT 7) uses a multitude of miniaturized sensors on all sides of the CubeSat to measure the Earth’s energy budget components at the top-of-the-atmosphere for climate change studies. INSPIRE-SAT 7 contains also a High-Frequency (HF) payload that will receive HF signals from a ground-based HF transmitter to probe the ionosphere for space weather studies. Finally, this CubeSat is equipped with several technological demonstrators (total solar irradiance sensors, UV sensors to measure solar spectral irradiance, a new Light Fidelity (Li-Fi) wireless communication system, a new versatile telecommunication system suitable for CubeSat). After introducing the objectives of the INSPIRE-SAT 7 mission, we present the satellite definition and the mission concept of operations. We also briefly show the observations made by the UVSQ-SAT CubeSat, and assess how two CubeSats in orbit could improve the information content of their Earth’s energy budget measurements. We conclude by reporting on the potential of future missions enabled by CubeSat constellations.


2021 ◽  
Vol 21 (24) ◽  
pp. 18689-18705
Author(s):  
Ilias Fountoulakis ◽  
Henri Diémoz ◽  
Anna Maria Siani ◽  
Alcide di Sarra ◽  
Daniela Meloni ◽  
...  

Abstract. The short- and long-term variability of the surface spectral solar ultraviolet (UV) irradiance is investigated across Italy using high-quality ground-based measurements from three locations: Aosta (45.7∘ N, 7.4∘ E, 570 m a.s.l.), Rome (41.9∘ N, 12.5∘ E, 15 75 m a.s.l.), and Lampedusa (35.5∘ N, 12.6∘ E, 50 m a.s.l.). The three sites are characterized by different environmental conditions and represent almost the full latitudinal extent of the Italian territory. Data of two periods were analysed: 2006–2020 (all sites) and 1996–2020 (Rome only). The main objective of this study is to quantify the effect of the geopotential height (GPH) at 250 hPa on total ozone, and spectral irradiance at 307.5 and 324 nm. We first show that monthly anomalies in GPH, total ozone, and spectral irradiances are correlated amongst the three sites, suggesting that Italy is often affected by the same synoptical weather systems. We further find statistically significant anticorrelations between GPH and monthly anomalies in total ozone for all stations and months. Conversely, we identify positive correlations between GPH and monthly anomalies in spectral irradiance at 307.5 nm for most months. The influence of GPH on short-term variability also hold for long-term trends. For example, long-term changes in total ozone over the period 2006–2020 were associated with changes in GPH for all stations. This suggests that observed negative trends in total ozone were mainly driven by changes in lower-stratospheric ozone as upper-stratospheric ozone was increasing over this period. For several months of the year, positive trends in UV irradiance were observed, and we found that these trends were predominantly caused by changes in clouds and/or aerosols instead of total ozone. For the longer period of 1996–2020, a statistically significant annualized decrease in total ozone of ∼ 0.1 % per year was identified for Rome and could subsequently be attributed to decreasing lower-stratospheric ozone. While positive trends in spectral irradiance at 307.5 nm were observed for several months of this extended period, the negative trend in total ozone did not lead to a positive trend in the spectral irradiance at 307.5 nm in the deseasonalized data. Our study provides evidence that dynamical processes taking place in the troposphere lead to significant variability in total ozone and surface solar UV irradiance.


2021 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Juseon Bak ◽  
Odele Coddington ◽  
Xiong Liu ◽  
Kelly Chance ◽  
Hyo-Jung Lee ◽  
...  

We evaluated a new high-resolution solar reference spectrum for characterizing space-borne Ozone Monitoring Instrument (OMI) measurements as well as for retrieving ozone profile retrievals over the ultraviolet (UV) wavelength range from 270 to 330 nm. The SAO2010 solar reference has been a standard for use in atmospheric trace gas retrievals, which is a composite of ground-based and balloon-based solar measurements from the Kitt Peak National Observatory (KPNO) and Air Force Geophysics Laboratory (AFGL), respectively. The new reference spectrum, called the TSIS-1 Hybrid Solar Reference Spectrum (HSRS), spans 202–2730 nm at a 0.01 to ~0.001 nm spectral resolution. The TSIS-1 HSRS in the UV region of interest in this study is a composite of AFGL and ground-based solar measurements from the Quality Assurance of Spectral Ultraviolet Measurements In Europe (QASUME) campaign, with a radiometric calibration that used the lower resolution Spectral Irradiance Monitor (SIM) instrument on the space-based Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) mission. The TSIS-1 HSRS radiometric uncertainties were below 1% whereas those of SAO2010 ranged from 5% in the longer UV part to 15% in the shorter UV part. In deriving slit functions and wavelength shifts from OMI solar irradiances, the resulting fitting residuals showed significant improvements of 0.5–0.7% (relatively, 20–50%) due to switching from the SAO2010 to the TSIS-1 HSRS. Correspondingly, in performing ozone profile retrievals from OMI radiances, the fitting residuals showed relative improvements of up to ~5% in 312–330 nm with relative differences of 5–7% in the tropospheric layer column ozone; the impact on stratospheric ozone retrievals was negligible.


2021 ◽  
Author(s):  
Luca Egli ◽  
Julian Gröbner ◽  
Gregor Hülsen ◽  
Herbert Schill ◽  
René Stübi

Abstract. Total column ozone (TCO) is commonly measured by Brewer and Dobson spectroradiometers. Both types of instruments are using four wavelengths in the ultraviolet radiation range to derive TCO. For the calibration and quality assurance of the measured TCO both instrument types require periodic field comparisons with a reference instrument. This study presents traceable TCO retrievals from direct solar spectral irradiance measurements with the portable UV reference instrument QASUME. TCO is retrieved by a spectral fitting technique derived by a minimal least square fit algorithm using spectral measurements in the wavelength range between 305 nm and 345 nm. The retrieval is based on an atmospheric model accounting for different atmospheric parameters such as effective ozone temperature, aerosol optical depth, Rayleigh scattering, SO2, ground air pressure, ozone absorption cross sections and top-of-atmosphere solar spectrum. Traceability means, that the QASUME instrument is fully characterized and calibrated in the laboratory to SI standards (International System of Units). The TCO retrieval method from this instrument is independent from any reference instrument and does not require periodic in situ field calibration. The results show that TCO from QASUME can be retrieved with a relative standard uncertainty of less than 0.8 %, when accounting for all possible uncertainties from the measurements and the retrieval model, such as different cross sections, different reference solar spectra, uncertainties from effective ozone temperature or other atmospheric parameters. The long-term comparison of QASUME TCO with a Brewer and a Dobson in Davos, Switzerland, reveals, that all three instruments are consistent within 1 % when using the ozone absorption cross section from the University of Bremen. From the results and method presented here, other absolute SI calibrated cost effective solar spectroradiometers, such as array spectroradiometers, may be applied for traceable TCO monitoring.


2021 ◽  
Vol 11 (24) ◽  
pp. 11846
Author(s):  
Yihan Lu ◽  
Wenye Hu ◽  
Wendy Davis

Light entrains human circadian rhythms, but increased time spent indoors and decreased daylight exposure may disrupt human circadian regulation and cause health problems. Much research is focused on improving indoor lighting conditions to minimize the adverse circadian impact of electric lights, and few studies investigate the circadian impact of daylight during the incidental time that people spend outdoors. For instance, when people commute from home to work, they are exposed to daylight. The purpose of this study is to investigate daylight’s impact on commuters’ circadian rhythms. Measurements of the illuminance and the spectral irradiance distribution (SID) of daylight were taken for three modes of commuting: driving, riding on trains, and walking; and under different weather conditions, on different days, and at different locations throughout the summer and autumn in the Sydney metropolitan region in Australia. With the SID data, three metrics were calculated to estimate the circadian impacts: α-opic irradiance, circadian stimulus (CS), and equivalent melanopic lux (EML). The results suggest that driving or walking on sunny or cloudy days and riding trains on sunny days are beneficial for the commuters’ circadian synchronization.


2021 ◽  
Author(s):  
C. Pierson ◽  
M. Gkaintatzi-Masouti ◽  
M.P.J. Aarts ◽  
M. Andersen

As the interest in design applications related to responses to light beyond vision is growing, two simulation tools, ALFA and Lark, have been developed to incorporate spectral characteristics of light in the evaluation of indoor lighting conditions. The spectral characteristics of light are of particular relevance when studying ipRGC-influenced responses. This paper aims to assess the reliability of these tools in predicting indoor spectral irradiance specifically from electric lighting. Spectral irradiance was measured under three indoor electric lighting scenarios and compared against spectral irradiance simulated in ALFA and Lark. While the outcomes of the study tend to show that ALFA is both more accurate and faster, rather large errors were found for spectral irradiance (-28.6% to 33.4%). In comparison to a prior study focusing on daylighting, these results seem to indicate that spectral simulations of electrically lit scenes are generally less accurate than those of daylit scenes with these tools.


Sign in / Sign up

Export Citation Format

Share Document