Three-dimensional imaging of objects in scattering medium by using statistical image processing

2011 ◽  
Author(s):  
Myungjin Cho ◽  
Bahram Javidi
2015 ◽  
Vol 196 ◽  
pp. 286-292 ◽  
Author(s):  
Krzysztof Oleszko ◽  
Mariusz Młynarczuk ◽  
Libor Sitek ◽  
Lubomír Staš

Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

1998 ◽  
Vol 10 (1-3) ◽  
pp. 100-108 ◽  
Author(s):  
Alicia Colson ◽  
Ross Parry

This article argues that the analysis of a threedimensional image demanded a three-dimensional approach. The authors realise that discussions of images and image processing inveterately conceptualise representation as being flat, static, and finite. The authors recognise the need for a fresh acuteness to three-dimensionality as a meaningful – although problematic – element of visual sources. Two dramatically different examples are used to expose the shortcomings of an ingrained two-dimensional approach and to facilitate a demonstration of how modern (digital) techniques could sanction new historical/anthropological perspectives on subjects that have become all too familiar. Each example could not be more different in their temporal and geographical location, their cultural resonance, and their historiography. However, in both these visual spectacles meaning is polysemic. It is dependent upon the viewer's spatial relationship to the artifice as well as the spirito-intellectual viewer within the community. The authors postulate that the multi- faceted and multi-layered arrangement of meaning in a complex image could be assessed by working beyond the limitations of the two-dimensional methodological paradigm and by using methods and media that accommodated this type of interconnectivity and representation.


Sign in / Sign up

Export Citation Format

Share Document