Raman Scattering Determination Of Carrier Concentration And Surface Space Charge Layer IN n-GaAs

Author(s):  
H. Shen ◽  
Fred H. Pollak ◽  
R. N. Sacks
1988 ◽  
Vol 135 ◽  
Author(s):  
Nancy J. Dudney

The ionic conductivity of a large number of electrolyte materials, such as LiI, AgCl, AgI and CuCl, is known to be enhanced by the addition of inert submicron particles, most often alumina. Typically the conductivity is enhanced by I to 3 orders of magnitude for composites containing 10 to 40 volume % particles. Several other researchers have attributed this effect to an enhanced carrier concentration in a space charge polarization layer surrounding the alumina particles. However, estimates of the magnitude of such a space charge layer indicate that this mechanism alone can not account for the large enhanced conductivities reported for several of the composites.


2013 ◽  
Vol 06 (04) ◽  
pp. 1330004 ◽  
Author(s):  
RÜDIGER-A. EICHEL ◽  
EMRE ERDEM ◽  
PETER JAKES ◽  
ANDREW OZAROWSKI ◽  
JOHAN VAN TOL ◽  
...  

The defect structure of ZnO nanoparticles is characterized by means of high-field electron paramagnetic resonance (EPR) spectroscopy. Different point and complex defects could be identified, located at the "bulk" or the surface region of the nanoparticles. In particular, by exploiting the enhanced g-value resolution at a Larmor frequency of 406.4 GHz, it could be shown that the resonance commonly observed at g = 1.96 is comprised of several overlapping resonances from different defects. Based on the high-field EPR analysis, the development of a space-charge layer could be monitored that consists of (shallow) donor-type [Formula: see text] defects at the "bulk" and acceptor-type [Formula: see text] and complex [Formula: see text] defects at the surface. Application of a core-shell model allows to determine the thickness of the depletion layer to 1.0 nm for the here studied compounds [J.J. Schneider et al., Chem. Mater.22, 2203 (2010)].


1974 ◽  
Vol 3 (12) ◽  
pp. 1459-1462
Author(s):  
Masahiro Kotani ◽  
Yoko Watanabe ◽  
Tomoko Kato

1997 ◽  
Vol 31 (10) ◽  
pp. 1053-1056 ◽  
Author(s):  
T. V. Blank ◽  
Yu. A. Gol’dberg ◽  
O. V. Konstantinov ◽  
O. I. Obolenskii ◽  
E. A. Posse

Sign in / Sign up

Export Citation Format

Share Document