Using satellite data to map coral reefs in the South China Sea

SPIE Newsroom ◽  
2007 ◽  
Author(s):  
Jianyu Chen
2020 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Wenlong Xu ◽  
Guifen Wang ◽  
Long Jiang ◽  
Xuhua Cheng ◽  
Wen Zhou ◽  
...  

The spatiotemporal variability of phytoplankton biomass has been widely studied because of its importance in biogeochemical cycles. Chlorophyll a (Chl-a)—an essential pigment present in photoautotrophic organisms—is widely used as an indicator for oceanic phytoplankton biomass because it could be easily measured with calibrated optical sensors. However, the intracellular Chl-a content varies with light, nutrient levels, and temperature and could misrepresent phytoplankton biomass. In this study, we estimated the concentration of phytoplankton carbon—a more suitable indicator for phytoplankton biomass—using a regionally adjusted bio-optical algorithm with satellite data in the South China Sea (SCS). Phytoplankton carbon and the carbon-to-Chl-a ratio (θ) exhibited considerable variability spatially and seasonally. Generally, phytoplankton carbon in the northern SCS was higher than that in the western and central parts. The regional monthly mean phytoplankton carbon in the northern SCS showed a prominent peak during December and January. A similar pattern was shown in the central part of SCS, but its peak was weaker. Besides the winter peak, the western part of SCS had a secondary maximum of phytoplankton carbon during summer. θ exhibited significant seasonal variability in the northern SCS, but a relatively weak seasonal change in the western and central parts. θ had a peak in September and a trough in January in the northern and central parts of SCS, whereas in the western SCS the minimum and maximum θ was found in August and during October–April of the following year, respectively. Overall, θ ranged from 26.06 to 123.99 in the SCS, which implies that the carbon content could vary up to four times given a specific Chl-a value. The variations in θ were found to be related to changing phytoplankton community composition, as well as dynamic phytoplankton physiological activities in response to environmental influences; which also exhibit much spatial differences in the SCS. Our results imply that the spatiotemporal variability of θ should be considered, rather than simply used a single value when converting Chl-a to phytoplankton carbon biomass in the SCS, especially, when verifying the simulation results of biogeochemical models.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yongxue Liu ◽  
Chao Sun ◽  
Jiaqi Sun ◽  
Hongyi Li ◽  
Wenfeng Zhan ◽  
...  

1993 ◽  
Vol 11 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Ye Yuguang ◽  
He Jie ◽  
Diao Shaobo ◽  
Gao Juncheng ◽  
Du Yajing

2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Yuanjie Li ◽  
Zuozhi Chen ◽  
Jun Zhang

To improve the overall understanding of the fish diversity and spatial patterns of major coral reefs in the South China Sea, fish assemblage composition, dominant species, biodiversity indices, and multivariate analysis of community structure were reported for four major coral reefs based on hand-line survey data in May and September 2018. A total of five orders, 21 families, 45 genera and 121 species of fish were recorded with Perciformes (78.5%) being the most diverse. The highest number (5) of dominant species was found near Chenhang Island while the lowest (2) number was detected at Zhubi Reef. The highest abundance index (7.21) occurred at Zhubi Reef, while the Shannon–Wiener diversity (4.80), Pielou’s evenness (0.81), and Simpson’s dominance (0.95) indexes were all highest at Qiliangyu Island. Based on cluster analysis and non-metric multi-dimensional scaling (NMDS), fish communities varied more spatially than seasonally. Our results led us to hypothesize that the habitat complexity and level of anthropogenic disturbance were the main factors affecting the composition of reef-dwelling fish on each coral reef. Topography was likely responsible for most variation in the spatial pattern of fish diversity.


2019 ◽  
Vol 138 ◽  
pp. 241-248 ◽  
Author(s):  
Xiangcheng Yuan ◽  
Yajuan Guo ◽  
Wei-jun Cai ◽  
Hui Huang ◽  
Weihua Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document