TU-C-304A-03: Stylized MIRD Phantoms Should Be Replaced by Anatomically Realistic Phantoms: Discrepancies In Red Bone Marrow Doses From CT Scans

2009 ◽  
Vol 36 (6Part22) ◽  
pp. 2727-2727
Author(s):  
H Liu ◽  
J Zhang ◽  
PF Caracappa ◽  
X Xu
2006 ◽  
Vol 45 (03) ◽  
pp. 134-138 ◽  
Author(s):  
T. Kull ◽  
N. M. Blumstein ◽  
D. Bunjes ◽  
B. Neumaier ◽  
A. K. Buck ◽  
...  

SummaryAim: For the therapeutic application of radiopharmaceuticals the activity is determined on an individual basis. Here we investigated the accuracy for a simplified assessment of the residence times for a 188Re-labelled anti-CD66 monoclonal antibody. Patients, methods: For 49 patients with high risk leukaemia (24 men, 25 women, age: 44 ± 12 years) the residence times were determined for the injected 188Re-labelled anti-CD66 antibodies (1.3 ± 0.4 GBq, 5–7 GBq/mg protein, >95% 188Re bound to the antibody) based on 5 measurements (1.5, 3, 20, 26, and 44 h p.i.) using planar conjugate view gamma camera images (complete method). In a simplified method the residence times were calculated based on a single measurement 3 h p.i. Results: The residence times for kidneys, liver, red bone marrow, spleen and remainder of body for the complete method were 0.4 ± 0.2 h, 1.9 ± 0.8 h, 7.8 ± 2.1 h, 0.6 ± 0.3 h and 8.6 ± 2.1 h, respectively. For all organs a linear correlation exists between the residence times of the complete method and the simplified method with the slopes (correlation coefficients R > 0.89) of 0.89, 0.99, 1.23, 1.13 and 1.09 for kidneys, liver, red bone marrow, spleen and remainder of body, respectively. Conclusion: The proposed approach allows reliable prediction of biokinetics of 188Re-labelled anti-CD66 monoclonal antibody biodistribution with a single study. Efficient pretherapeutic estimation of organ absorbed dose may be possible, provided that a more stable anti-CD66 antibody preparation is available.


2021 ◽  
pp. 106611
Author(s):  
Maria Zankl ◽  
Jonathan Eakins ◽  
José-María Gómez Ros ◽  
Christelle Huet
Keyword(s):  

Author(s):  
G.I. PRONINA ◽  
◽  
A.A. IVANOV ◽  
A.G. MANNAPOV ◽  
O.V. SANAYA

The paper shows features of the immune system of poikilothermic aquatic organisms of different taxonomic groups: crustaceans, fish, and amphibians. Defense mechanisms of crustaceans are presented by largely innate non-specific factors: external covers (including the exoskeleton), mucus, physical and chemical barriers lysozyme in the hemolymph, propanolamine system, and phagocytosis. The authors identified 4 types of cells (hemocytes) found in the circulating fluid of crayfish, depending on the morphological and functional properties: agranulocytes, progranulin,granulocytes, and transparent cells. Each type performs different functions in the process of immune defense. In fish, there is no red bone marrow and lymph nodes, the main organs of hematopoiesis include thymus, spleen, liver, lymphoid tissue of the brain and the trunk of the kidneys,accumulation of lymphoid tissue of the cranial box, intestine, and pericardium. Humoral components of the immune response of fish are represented by immunoglobulins, system complement components, lysozyme, C-reactive protein, interferon, lysine, hemolysin, hemagglutinin. Only IgM-like antibodies represent immunoglobulins in fish. The central organ of the amphibian immune system is the red bone marrow, but its role in the immune defense of amphibians has not been sufficiently studied. Peripheral organs of the immune system include kidneys, thymus, spleen, lymphomyeloid organs. Depending on the characteristics of the immune system of poikilothermic hydrobionts of different types, the authors offer methods for assessing their humoralimmunity (by determining phenoloxidase) and cellular response (by phagocytosis). Cellular immunity, and phagocytic activity, in particular, can be evaluated using cytochemical methods taking into account oxygenindependent factors – the content of enzymatic lysosomal cationic protein in phagocytes – and oxygendependent ones – NBT-test with nitrosonium tetrazolium that records cytotoxic oxygen radicals generated during the respiratory explosion of cell stimulation in vitro.


Orthopedics ◽  
1999 ◽  
Vol 22 (8) ◽  
pp. 780-780
Author(s):  
James F Glockner ◽  
Murali Sundaram
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document