Accurate brain volumetry with diffusion-weighted spin-echo single-shot echo-planar-imaging and dual-clustering segmentation: Comparison with volumetry-validated quantitative magnetic resonance imaging

2010 ◽  
Vol 37 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Memi Watanabe ◽  
Osamu Sakai ◽  
Alexander M. Norbash ◽  
Hernán Jara
2013 ◽  
Vol 16 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Y. Zhalniarovich ◽  
Z. Adamiak ◽  
A. Pomianowski ◽  
M. Jaskólska

Abstract Magnetic resonance imaging is the best imaging modality for the brain and spine. Quality of the received images depends on many technical factors. The most significant factors are: positioning the patient, proper coil selection, selection of appropriate sequences and image planes. The present contrast between different tissues provides an opportunity to diagnose various lesions. In many clinics magnetic resonance imaging has replaced myelography because of its noninvasive modality and because it provides excellent anatomic detail. There are many different combinations of sequences possible for spinal and brain MR imaging. Most frequently used are: T2-weighted fast spin echo (FSE), T1- and T2-weighted turbo spin echo, Fluid Attenuation Inversion Recovery (FLAIR), T1-weighted gradient echo (GE) and spin echo (SE), high-resolution three-dimensional (3D) sequences, fat-suppressing short tau inversion recovery (STIR) and half-Fourier acquisition single-shot turbo spin echo (HASTE). Magnetic resonance imaging reveals neurologic lesions which were previously hard to diagnose antemortem.


2019 ◽  
Author(s):  
Mahdi Khajehim ◽  
Thomas Christen ◽  
J. Jean Chen

AbstractPurposeTo introduce a novel magnetic-resonance fingerprinting (MRF) framework with single-shot echo-planar imaging (EPI) readout to simultaneously estimate tissue T2, T1 and T2*, and integrate B1 correction.MethodsSpin-echo EPI is combined with gradient-echo EPI to achieve T2 estimation as well as T1 and T2* quantification. In the dictionary matching step, the GE-EPI data segment provides estimates of tissue T1 and T2* with additional B1 information, which are then incorporated into the T2-matching step that uses the SE-EPI data segment. In this way, biases in T2 and T2* estimates do not affect each other.ResultsAn excellent correspondence was found between our T1, T2, and T2* estimates and results obtained from standard approaches in both phantom and human scans. In the phantom scan, a linear relationship with R2>0.96 was found for all parameter estimates. The maximum error in the T2 estimate was found to be below 6%. In the in-vivo scan, similar contrast was noted between MRF and standard approaches, and values found in a small region of interest (ROI) located in the grey matter (GM) were in line with previous measurements (T2MRF=88±7ms vs T2Ref=89±11ms, T1MRF=1153±154ms vs T1Ref=1122±52ms, T2*MRF=56±4ms vs T2*Ref=53±3ms).ConclusionAdding a spin echo data segment to EPI based MRF allows accurate and robust measurements of T2, T1 and T2* relaxation times. This MRF framework is easier to implement than spiral-based MRF. It doesn’t suffer from undersampling artifacts and seems to require a smaller dictionary size that can fasten the reconstruction process.


2018 ◽  
Vol 132 (3) ◽  
pp. 207-213 ◽  
Author(s):  
R Nash ◽  
R K Lingam ◽  
D Chandrasekharan ◽  
A Singh

AbstractObjective:To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma.Methods:A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7–79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a ‘gold standard’. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma.Results:The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p< 0.001).Conclusion:Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.


Sign in / Sign up

Export Citation Format

Share Document