Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images

2000 ◽  
Vol 27 (6) ◽  
pp. 1333-1342 ◽  
Author(s):  
J. D. Gill ◽  
H. M. Ladak ◽  
D. A. Steinman ◽  
A. Fenster
2019 ◽  
Vol 46 (7) ◽  
pp. 3180-3193 ◽  
Author(s):  
Ran Zhou ◽  
Aaron Fenster ◽  
Yujiao Xia ◽  
J. David Spence ◽  
Mingyue Ding

Author(s):  
P.M.B. Torres ◽  
P. J. S. Gonçalves ◽  
J.M.M. Martins

Purpose – The purpose of this paper is to present a robotic motion compensation system, using ultrasound images, to assist orthopedic surgery. The robotic system can compensate for femur movements during bone drilling procedures. Although it may have other applications, the system was thought to be used in hip resurfacing (HR) prosthesis surgery to implant the initial guide tool. The system requires no fiducial markers implanted in the patient, by using only non-invasive ultrasound images. Design/methodology/approach – The femur location in the operating room is obtained by processing ultrasound (USA) and computer tomography (CT) images, obtained, respectively, in the intra-operative and pre-operative scenarios. During surgery, the bone position and orientation is obtained by registration of USA and CT three-dimensional (3D) point clouds, using an optical measurement system and also passive markers attached to the USA probe and to the drill. The system description, image processing, calibration procedures and results with simulated and real experiments are presented and described to illustrate the system in operation. Findings – The robotic system can compensate for femur movements, during bone drilling procedures. In most experiments, the update was always validated, with errors of 2 mm/4°. Originality/value – The navigation system is based entirely on the information extracted from images obtained from CT pre-operatively and USA intra-operatively. Contrary to current surgical systems, it does not use any type of implant in the bone to track the femur movements.


2006 ◽  
Vol 51 (6) ◽  
pp. 304-310 ◽  
Author(s):  
V. F. Kravchenko ◽  
V. I. Ponomaryov ◽  
V. I. Pustovoĭt ◽  
R. Sansores-Pech

2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


2020 ◽  
Vol 7 (01) ◽  
pp. 1
Author(s):  
Ipek Oguz ◽  
Natalie Yushkevich ◽  
Alison Pouch ◽  
Baris U. Oguz ◽  
Jiancong Wang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Takako Sugiura ◽  
Yuka Sato ◽  
Naoyuki Nakanami ◽  
Kiyomi Tsukimori

Sirenomelia is a rare congenital malformation characterized by varying degrees of fusion of the lower extremities. It is commonly associated with severe urogenital and gastrointestinal malformations; however, the association of sirenomelia with anencephaly and rachischisis totalis is extremely rare. To our knowledge, the prenatal sonographic images of this association have not been previously published. Here, we present prenatal sonographic images of this association, detected during the 17th week of gestation through combined two-dimensional, four-dimensional, and color Doppler ultrasound. Two-dimensional ultrasound images showed anencephaly, spina bifida, and possible fusion of the lower limbs. Three-dimensional HDlive rendering images confirmed the final diagnosis of sirenomelia with anencephaly and rachischisis totalis. The patient opted to undergo medical termination of pregnancy and delivered a fetus with fused lower limbs, anencephaly, and rachischisis totalis confirming the in utero imaging findings. Awareness of these rare associations will help avoid misdiagnoses and facilitate prenatal counselling. This case highlights the importance of a thorough ultrasound examination.


Sign in / Sign up

Export Citation Format

Share Document