scholarly journals A model of temporal processing in cochlear implants

1984 ◽  
Vol 76 (S1) ◽  
pp. S48-S48
Author(s):  
Robert V. Shannon
1999 ◽  
Vol 82 (6) ◽  
pp. 2883-2902 ◽  
Author(s):  
Maike Vollmer ◽  
Russell L. Snyder ◽  
Patricia A. Leake ◽  
Ralph E. Beitel ◽  
Charlotte M. Moore ◽  
...  

As cochlear implants have become increasingly successful in the rehabilitation of adults with profound hearing impairment, the number of pediatric implant subjects has increased. We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats. Maximum following frequencies (Fmax) and response latencies of isolated single neurons to intracochlear electrical pulse trains (charge balanced, constant current biphasic pulses) were recorded in the contralateral inferior colliculus (IC) of two groups of neonatally deafened, barbiturate-anesthetized cats: animals chronically stimulated with low-frequency signals (≤80 Hz) and animals receiving chronic high-frequency stimulation (≥300 pps). The results were compared with data from unstimulated, acutely deafened and implanted adult cats with previously normal hearing (controls). Characteristic differences were seen between the temporal response properties of neurons in the external nucleus (ICX; ∼16% of the recordings) and neurons in the central nucleus (ICC; ∼81% of all recordings) of the IC: 1) in all three experimental groups, neurons in the ICX had significantly lower Fmax and longer response latencies than those in the ICC. 2) Chronic electrical stimulation in neonatally deafened cats altered the temporal resolution of neurons exclusively in the ICC but not in the ICX. The magnitude of this effect was dependent on the frequency of the chronic stimulation. Specifically, low-frequency signals (30 pps, 80 pps) maintained the temporal resolution of ICC neurons, whereas higher-frequency stimuli significantly improved temporal resolution of ICC neurons (i.e., higher Fmax and shorter response latencies) compared with neurons in control cats. Furthermore, Fmax and latencies to electrical stimuli were not correlated with the tonotopic gradient of the ICC, and changes in temporal resolution following chronic electrical stimulation occurred uniformly throughout the entire ICC. In all three experimental groups, increasing Fmax was correlated with shorter response latencies. The results indicate that the temporal features of the chronically applied electrical signals critically influence temporal processing of neurons in the cochleotopically organized ICC. We suggest that such plastic changes in temporal processing of central auditory neurons may contribute to the intersubject variability and gradual improvements in speech recognition performance observed in clinical studies of deaf children using cochlear implants.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Iliza M. Butera ◽  
Ryan A. Stevenson ◽  
Brannon D. Mangus ◽  
Tiffany G. Woynaroski ◽  
René H. Gifford ◽  
...  

2020 ◽  
Vol 63 (11) ◽  
pp. 3855-3864
Author(s):  
Wanting Huang ◽  
Lena L. N. Wong ◽  
Fei Chen ◽  
Haihong Liu ◽  
Wei Liang

Purpose Fundamental frequency (F0) is the primary acoustic cue for lexical tone perception in tonal languages but is processed in a limited way in cochlear implant (CI) systems. The aim of this study was to evaluate the importance of F0 contours in sentence recognition in Mandarin-speaking children with CIs and find out whether it is similar to/different from that in age-matched normal-hearing (NH) peers. Method Age-appropriate sentences, with F0 contours manipulated to be either natural or flattened, were randomly presented to preschool children with CIs and their age-matched peers with NH under three test conditions: in quiet, in white noise, and with competing sentences at 0 dB signal-to-noise ratio. Results The neutralization of F0 contours resulted in a significant reduction in sentence recognition. While this was seen only in noise conditions among NH children, it was observed throughout all test conditions among children with CIs. Moreover, the F0 contour-induced accuracy reduction ratios (i.e., the reduction in sentence recognition resulting from the neutralization of F0 contours compared to the normal F0 condition) were significantly greater in children with CIs than in NH children in all test conditions. Conclusions F0 contours play a major role in sentence recognition in both quiet and noise among pediatric implantees, and the contribution of the F0 contour is even more salient than that in age-matched NH children. These results also suggest that there may be differences between children with CIs and NH children in how F0 contours are processed.


2019 ◽  
Vol 28 (2) ◽  
pp. 322-332 ◽  
Author(s):  
Aurora J. Weaver ◽  
Jeffrey J. DiGiovanni ◽  
Dennis T. Ries
Keyword(s):  

2019 ◽  
Vol 28 (4) ◽  
pp. 986-992 ◽  
Author(s):  
Lisa R. Park ◽  
Erika B. Gagnon ◽  
Erin Thompson ◽  
Kevin D. Brown

Purpose The aims of this study were to (a) determine a metric for describing full-time use (FTU), (b) establish whether age at FTU in children with cochlear implants (CIs) predicts language at 3 years of age better than age at surgery, and (c) describe the extent of FTU and length of time it took to establish FTU in this population. Method This retrospective analysis examined receptive and expressive language outcomes at 3 years of age for 40 children with CIs. Multiple linear regression analyses were run with age at surgery and age at FTU as predictor variables. FTU definitions included 8 hr of device use and 80% of average waking hours for a typically developing child. Descriptive statistics were used to describe the establishment and degree of FTU. Results Although 8 hr of daily wear is typically considered FTU in the literature, the 80% hearing hours percentage metric accounts for more variability in outcomes. For both receptive and expressive language, age at FTU was found to be a better predictor of outcomes than age at surgery. It took an average of 17 months for children in this cohort to establish FTU, and only 52.5% reached this milestone by the time they were 3 years old. Conclusions Children with normal hearing can access spoken language whenever they are awake, and the amount of time young children are awake increases with age. A metric that incorporates the percentage of time that children with CIs have access to sound as compared to their same-aged peers with normal hearing accounts for more variability in outcomes than using an arbitrary number of hours. Although early FTU is not possible without surgery occurring at a young age, device placement does not guarantee use and does not predict language outcomes as well as age at FTU.


2020 ◽  
Vol 5 (5) ◽  
pp. 1175-1187
Author(s):  
Rachel Glade ◽  
Erin Taylor ◽  
Deborah S. Culbertson ◽  
Christin Ray

Purpose This clinical focus article provides an overview of clinical models currently being used for the provision of comprehensive aural rehabilitation (AR) for adults with cochlear implants (CIs) in the Unites States. Method Clinical AR models utilized by hearing health care providers from nine clinics across the United States were discussed with regard to interprofessional AR practice patterns in the adult CI population. The clinical models were presented in the context of existing knowledge and gaps in the literature. Future directions were proposed for optimizing the provision of AR for the adult CI patient population. Findings/Conclusions There is a general agreement that AR is an integral part of hearing health care for adults with CIs. While the provision of AR is feasible in different clinical practice settings, service delivery models are variable across hearing health care professionals and settings. AR may include interprofessional collaboration among surgeons, audiologists, and speech-language pathologists with varying roles based on the characteristics of a particular setting. Despite various existing barriers, the clinical practice patterns identified here provide a starting point toward a more standard approach to comprehensive AR for adults with CIs.


Sign in / Sign up

Export Citation Format

Share Document