Effect of a downstream ventilated gas cavity on turbulent boundary layer wall pressure fluctuation spectra

2005 ◽  
Vol 118 (6) ◽  
pp. 3506-3512 ◽  
Author(s):  
Steven D. Young ◽  
Timothy A. Brungart ◽  
Gerald C. Lauchle ◽  
Michael S. Howe
Author(s):  
Teresa S. Miller ◽  
Mark J. Moeller

The turbulent boundary layer that forms on the outer surfaces of vehicles can be a significant source of interior noise. In automobiles this is known as wind noise, and at high speeds it dominates the interior noise. For airplanes the turbulent boundary is also a dominant noise source. Because of its importance as a noise source, it is desirable to have a model of the turbulent wall pressure fluctuations for interior noise prediction. One important parameter in building the wall pressure fluctuation model is the convection velocity. In this paper, the phase velocity was determined from the streamwise pressure measurements. The phase velocity was calculated for three separation distances ranging from 0.25 to 1.30 boundary layer thicknesses. These measurements were made for a Mach number range of 0.1 < M < 0.6. The phase velocity was shown to vary with sensor spacing and frequency. The data collapsed well on outer variable normalization. The phase velocities were fit and the group velocity was calculated from the curve fit. The group velocity was consistent with the array measured convection velocities. The group velocity was also estimated by a band limited cross correlation technique that used the Hilbert transform to find the energy delay. This result was consistent with the group velocity inferred from the phase velocities and the array measured convection velocity. From this research, it is suggested that the group velocity found in this study should be used to estimate the convection velocity in wall pressure fluctuation models.


Author(s):  
Steven D. Young ◽  
Timothy A. Brungart ◽  
Gerald C. Lauchle

This paper theoretically and experimentally examines the effect of a downstream ventilated gas cavity on the spectrum of turbulent boundary layer wall pressure fluctuations. The theoretical model predicts that the ratio of the point spectrum of the turbulent boundary layer wall pressure fluctuations upstream of a ventilated gas cavity to the blocked point pressure spectrum decays rapidly to zero as the cavity origin is approached and undergoes oscillations in amplitude that relax to unity as the quantity ωx/Uc goes to infinity upstream of the cavity. Here ω is the radian frequency, x is the distance upstream from the cavity origin and Uc is the convection velocity. A water tunnel experiment was performed to investigate the theoretical predictions. Dynamic wall pressure sensors were mounted flush to the surface of a flat plate at various distances upstream from a rearward facing step. Carbon dioxide gas was injected into the separated flow region downstream of the step to form a ventilated cavity. The water tunnel measurements were unable to verify the reduction in the amplitude of the turbulent boundary layer wall pressure fluctuations as the step and cavity were approached but did verify the fundamental oscillation predicted by the theoretical model and its relaxation to unity as ωx/Uc went to infinity upstream of the step and cavity.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1088-1096
Author(s):  
O. H. Unalmis ◽  
D. S. Dolling

2000 ◽  
Author(s):  
B. Efimtsov ◽  
N. Kozlov ◽  
S. Kravchenko ◽  
A. Andersson

Sign in / Sign up

Export Citation Format

Share Document