Wall Pressure Phase Velocity Measurements in a Turbulent Boundary Layer

Author(s):  
Teresa S. Miller ◽  
Mark J. Moeller

The turbulent boundary layer that forms on the outer surfaces of vehicles can be a significant source of interior noise. In automobiles this is known as wind noise, and at high speeds it dominates the interior noise. For airplanes the turbulent boundary is also a dominant noise source. Because of its importance as a noise source, it is desirable to have a model of the turbulent wall pressure fluctuations for interior noise prediction. One important parameter in building the wall pressure fluctuation model is the convection velocity. In this paper, the phase velocity was determined from the streamwise pressure measurements. The phase velocity was calculated for three separation distances ranging from 0.25 to 1.30 boundary layer thicknesses. These measurements were made for a Mach number range of 0.1 < M < 0.6. The phase velocity was shown to vary with sensor spacing and frequency. The data collapsed well on outer variable normalization. The phase velocities were fit and the group velocity was calculated from the curve fit. The group velocity was consistent with the array measured convection velocities. The group velocity was also estimated by a band limited cross correlation technique that used the Hilbert transform to find the energy delay. This result was consistent with the group velocity inferred from the phase velocities and the array measured convection velocity. From this research, it is suggested that the group velocity found in this study should be used to estimate the convection velocity in wall pressure fluctuation models.

2005 ◽  
Vol 118 (6) ◽  
pp. 3506-3512 ◽  
Author(s):  
Steven D. Young ◽  
Timothy A. Brungart ◽  
Gerald C. Lauchle ◽  
Michael S. Howe

1971 ◽  
Vol 45 (1) ◽  
pp. 65-90 ◽  
Author(s):  
J. A. B. Wills

Measurements are presented of the wave-number/frequency and wave-number/phase velocity spectrum of wall pressure for a two-dimensional turbulent boundary layer in zero pressure gradient, obtained from a Fourier transform of experimental filtered spatial correlations. This method allows the results to be corrected for acoustic disturbances in the wind tunnel, and for finite transducer size. An empirical form for the pressure field is proposed, based on the measurements, and is used to predict a frequency spectrum correction for transducer size which agrees well with measured values.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Sylvain Morilhat ◽  
François Chedevergne ◽  
Francis Micheli ◽  
Frank Simon

Abstract An experimental campaign dedicated to the characterization of the wall-normal velocity correlations in a zero pressure gradient turbulent boundary layer was performed. A double set of laser Doppler velocimetry (LDV) benches were used to access two-point two-time correlations of the wall-normal velocity. The measurements analysis confirms several important hypotheses classically made to model wall pressure spectra from the velocity correlations. In particular, the ratio of the wall-normal Reynolds stress to the turbulent shear stress is confirmed to exhibit a large plateau in the logarithmic region. In addition, Taylor's hypothesis of frozen turbulence is well recovered for the wall-normal velocity fluctuations. The convection velocity for the wall-normal velocity fluctuations is also shown to evolve across the boundary layer, according to the mean velocity profile. Furthermore, the decorrelation time scale of velocity correlations appears to be increasing throughout the boundary layer thickness in accordance with the increase of the convection velocity. The results obtained with this original campaign will help improving models for wall pressure spectra, especially those based on the resolution of the Poisson equation for the pressure for which the wall pressure correlations are related to the wall-normal velocity correlations.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1088-1096
Author(s):  
O. H. Unalmis ◽  
D. S. Dolling

Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document