A comparison of two modeling approaches for reverberation in a shallow-water waveguide where the scattering arises from a sub-bottom interface

2007 ◽  
Vol 122 (5) ◽  
pp. 3091
Author(s):  
Dale D. Ellis ◽  
Charles W. Holland
2009 ◽  
Vol 17 (01) ◽  
pp. 29-43 ◽  
Author(s):  
CHARLES W. HOLLAND ◽  
DALE D. ELLIS

In shallow water environments where the uppermost sediment layer is a fine-grained fabric (e.g. clay or silty-clay), the observed reverberation may be dominated by scattering from the sub-bottom. Here, reverberation predictions from normal mode and energy flux models are compared for the case where the scattering arises from a sub-bottom half-space under a fine-grained sediment layer. It is shown that in such an environment, the position of the angle of intromission, in addition to the angular dependence of the scattering kernel, is a factor controlling the reverberation and its vertical angle distribution. It is also shown that the reverberation from a sub-bottom horizon is typically governed by higher grazing angles than the case where the scattering occurs at the water–sediment interface. There was generally very close agreement between the models as a function of frequency (200–1600 Hz), layer thickness (0–8 m), and range (1–15 km). The model comparisons, showing some differences, illuminate the result of different approximations in the two approaches.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2011 ◽  
Vol 181 (11) ◽  
pp. 1222 ◽  
Author(s):  
Aleksandr G. Luchinin ◽  
Aleksandr I. Khil'ko
Keyword(s):  

2012 ◽  
Vol 2 (6) ◽  
pp. 271-272
Author(s):  
Sudhir Pal Singh Rawat ◽  
◽  
Dr. Arnab Das ◽  
Dr. H.G.Virani Dr. H.G.Virani ◽  
Dr. Y.K.Somayajulu Dr. Y.K.Somayajulu

2002 ◽  
Vol 45 (3) ◽  
pp. 301-317 ◽  
Author(s):  
Andrea Mindszenty ◽  
J. Ferenc Deák ◽  
Mária Fölvári

Sign in / Sign up

Export Citation Format

Share Document