Optimal time‐domain beamforming with simulated annealing including application of a priori information

1990 ◽  
Vol 88 (4) ◽  
pp. 1802-1810 ◽  
Author(s):  
W. A. Kuperman ◽  
Michael D. Collins ◽  
John S. Perkins ◽  
N. R. Davis
Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1438-1449 ◽  
Author(s):  
Seiichi Nagihara ◽  
Stuart A. Hall

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3‐D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2‐D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA‐based gravity inversion has some advantages over the approach based on damped least‐squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.


Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 613-626 ◽  
Author(s):  
Xin‐Quan Ma

A global optimization algorithm using simulated annealing has advantages over local optimization approaches in that it can escape from being trapped in local minima and it does not require a good initial model and function derivatives to find a global minimum. It is therefore more attractive and suitable for seismic waveform inversion. I adopt an improved version of a simulated annealing algorithm to invert simultaneously for acoustic impedance and layer interfaces from poststack seismic data. The earth’s subsurface is overparameterized by a series of microlayers with constant thickness in two‐way traveltime. The algorithm is constrained using the low‐frequency impedance trend and has been made computationally more efficient using this a priori information as an initial model. A search bound of each parameter, derived directly from the a priori information, reduces the nonuniqueness problem. Application of this technique to synthetic and field data examples helps one recover the true model parameters and reveals good continuity of estimated impedance across a seismic section. This approach has the capability of revealing the high‐resolution detail needed for reservoir characterization when a reliable migrated image is available with good well ties.


2008 ◽  
Vol E91-B (9) ◽  
pp. 3041-3044
Author(s):  
F. YANG ◽  
Y. ZHANG ◽  
J. SONG ◽  
C. PAN ◽  
Z. YANG

Sign in / Sign up

Export Citation Format

Share Document