The PVDF-based wave number domain sensing techniques for active sound radiation control from a simply supported beam

1998 ◽  
Vol 103 (4) ◽  
pp. 1904-1915 ◽  
Author(s):  
Bor-Tsuen Wang
2021 ◽  
Vol 66 (1) ◽  
pp. 17-24
Author(s):  
Zeno-Iosif Praisach ◽  
Dorel Ardeljan ◽  
Constantin-Viorel Pașcu

Continuous beams simply supported with several intermediate supports are very common in engineering achievements everywhere. The paper shows the evolution of the dimensionless wave number in 3D format, respectively of the eigenfrequencies for a continuous beam with three openings when the intermediate supports take any position inside the beam. The frequency equation for calculating the dimensionless wave number is presented and the modal function is given with an example for the case where the eigenfrequency has the maximum value at fist vibration mode.


2021 ◽  
Vol 682 (1) ◽  
pp. 012045
Author(s):  
K V Nguyen ◽  
C A L Huynh ◽  
H D H Nguyen ◽  
N D Van ◽  
N T Nguyen ◽  
...  

Author(s):  
Gonglian Dai ◽  
Meng Wang ◽  
Tianliang Zhao ◽  
Wenshuo Liu

<p>At present, Chinese high-speed railway operating mileage has exceeded 20 thousand km, and the proportion of the bridge is nearly 50%. Moreover, high-speed railway design speed is constantly improving. Therefore, controlling the deformation of the bridge structure strictly is particularly important to train speed-up as well as to ensure the smoothness of the line. This paper, based on the field test, shows the vertical and transverse absolute displacements of bridge structure by field collection. What’s more, resonance speed and dynamic coefficient of bridge were studied. The results show that: the horizontal and vertical stiffness of the bridge can meet the requirements of <b>Chinese “high-speed railway design specification” (HRDS)</b>, and the structure design can be optimized. However, the dynamic coefficient may be greater than the specification suggested value. And the simply supported beam with CRTSII ballastless track has second-order vertical resonance velocity 306km/h and third-order transverse resonance velocity 312km/h by test results, which are all coincide with the theoretical resonance velocity.</p>


Sign in / Sign up

Export Citation Format

Share Document