Finite-element model development of a uniformly loaded simply supported beam using strain energy density criterion

1986 ◽  
Vol 22 (4) ◽  
pp. 659-663
Author(s):  
A.H. Patel ◽  
R. Ali
2018 ◽  
Vol 53 (1) ◽  
pp. 73-82
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Alejandro Vega-Rios ◽  
Sergio G Flores-Gallardo ◽  
E Armando Zaragoza-Contreras ◽  
Mónica E Mendoza-Duarte

The application of a hyperelastic approach to simulate the tensile mechanical behavior of wood fiber/polymer composites is proposed. This research was conducted with the purpose of selecting the theoretical model that best fits the experimental data for use in the finite element model. The analyses by the four strain energy density functions (Polynomial, Ogden, Yeoh, and Marlow models) and the Cauchy-Green tensor invariants were used as the theoretical models. The experimental mechanical behavior of three wood fiber/polymer composites formulated with high-density polyethylene as the polymer matrix, and pine, cherry, and walnut sawdust as the fillers, at a concentration of 40 wt%, was evaluated. Experimental data showed that with filler addition, the tensile modulus of the high-density polyethylene matrix increased almost 131% regarding the neat high-density polyethylene; however, no significant differences were found respecting the kind of sawdust. Nevertheless, it was found that the elongation (%) at break was higher when walnut sawdust was employed. As for the strain energy density function analyses, the best approximation to the experimental data was achieved by the Marlow model, because this model only demands the sum of the principal extension ratios for a polymer-based material, I1. The numerical results showed that the proposed finite element model predicts the response with less than 1% error, regarding the experimental data, and consequently the use of the finite element models was simplified for the prediction of the tensile mechanical behavior of this kind of composites.


2009 ◽  
Author(s):  
F. Scott Gayzik ◽  
Craig A. Hamilton ◽  
Josh C. Tan ◽  
Craig McNally ◽  
Stefan M. Duma ◽  
...  

1996 ◽  
Vol 436 ◽  
Author(s):  
R. P. Vinci ◽  
J. C. Bravman

AbstractWe have modeled the effects of grain aspect ratio on strain energy density in (100)-oriented grains in a (111)-textured Cu film on a Si substrate. Minimization of surface energy, interface energy, and strain energy density (SED) drives preferential growth of grains of certain crystallographic orientations in thin films. Under conditions in which the SED driving force exceeds the surface- and interface-energy driving forces, Cu films develop abnormally large (100) oriented grains during annealing. In the elastic regime the SED differences between the (100) grains and the film average arise from elastic anisotropy. Previous analyses indicate that several factors (e.g. elimination of grain boundaries during grain growth) may alter the magnitude of the SED driving force. We demonstrate, using finite element modeling of a single columnar (100) grain in a (111) film, that changes in grain aspect ratio can significantly affect the SED driving force. A minimum SED driving force is found for (100) Cu grains with diameters on the order of the film thickness. In the absence of other stagnation mechanisms, such behavior could cause small grains to grow abnormally and then stagnate while large grains continue to grow. This would lead to a bimodal grain size distribution in the (100) grains preferred by the SED minimization.


2019 ◽  
Vol 162 ◽  
pp. 105705 ◽  
Author(s):  
Reza Nasouri ◽  
Kien Nguyen ◽  
Arturo Montoya ◽  
Adolfo Matamoros ◽  
Caroline Bennett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document