COMPLEX CROSS-CORRELATION PARAMETERS FOR MULTI-CHANNEL AUDIO

2012 ◽  
Vol 132 (6) ◽  
pp. 4091
Author(s):  
Sanjeev Mehrotra ◽  
Wei-Ge Chen
Radio Science ◽  
2004 ◽  
Vol 39 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Zhaomei Feng ◽  
Erhan Kudeki ◽  
Ronald F. Woodman ◽  
Jorge Chau ◽  
Marco Milla

2020 ◽  
Vol 69 (8) ◽  
pp. 5673-5683
Author(s):  
Chen Chen ◽  
Ghulam Mehdi ◽  
Chao Wang ◽  
Umar Dilshad ◽  
Anyong Hu ◽  
...  

1997 ◽  
Vol 19 (3) ◽  
pp. 180-194 ◽  
Author(s):  
Peter J. Brands ◽  
Arnold P.G. Hoeks ◽  
Léon A.F. Ledoux

This paper evaluates the performance of a one bit mean frequency estimator to estimate blood flow velocity for ultrasound color flow mapping. This one bit mean frequency estimator, referred to as BC3 estimator, is derived from the recently introduced complex cross-correlation model (C3M) employing the full dynamic data range. The C3M velocity estimator is not suitable for application in color flow mapping because of its high hardware complexity and associated computational load. The BC3 estimator estimates the mean blood flow velocity using only two complex cross-correlation coefficients. For this purpose the latter are computed by means of a complex one bit cross-correlation operation. Each sample of the RF signals is converted into an one bit representation based on the sign of the real and imaginary part of the RF samples. A full derivation and mathematical description of the BC3 estimator is presented. In addition, a thorough performance evaluation of the BC3 estimator in comparison with the full dynamic range C3M velocity estimator is carried out by means of signal simulations to document the effect of signal to noise ratio, sample frequency and bandwidth. For the specific simulation conditions considered the standard deviation of both estimators (C3M and BC3) is comparable. The bias of the BC3 estimator appears to be a function of velocity, while the full dynamic range C3M velocity estimator exhibits no bias. The simulation results are confirmed by evaluation of data from an in vivo measurement. Taking into account the low hardware complexity and computational load in combination with the achieved precision, it may be concluded that the BC3 estimator is well suited for implementation in color flow mapping.


Author(s):  
Igor Alexandrovich Knyaz’

AbstractWe study the noise induced directed transport of an inertial Brownian particle moving in a symmetric spatially periodic potential and is subjected to correlated colored noises. Under the assumption of small correlation times of colored fluctuations we obtain an analytical expression for resulting current in overdamped systems. Our analytical and numerical calculations indicate the directed current is controlled by the correlation parameters. It has been pointed out that the nonzero correlation time makes an important contribution to current only at large enough values of noise intensities. The role of other system parameters is investigated from the viewpoint of optimization the current amplitude.


Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


Sign in / Sign up

Export Citation Format

Share Document