color flow
Recently Published Documents


TOTAL DOCUMENTS

2056
(FIVE YEARS 234)

H-INDEX

84
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
pp. 101069
Author(s):  
Gisele V. Baracho ◽  
Nihan Kara ◽  
Stephanie Rigaud ◽  
Evelyn Lo ◽  
Stephanie J. Widmann ◽  
...  

2022 ◽  
Author(s):  
Sho Sato ◽  
Hirokazu Matsushita ◽  
Daisuke Shintani ◽  
Nao Fujieda ◽  
Akira Yabuno ◽  
...  

Abstract Background Regulatory T cells (Tregs) play an important role in the antitumor immune response in epithelial ovarian cancer (EOC). To understand the immune-inhibitory networks of EOC, we addressed the association between Tregs and immune checkpoint expression on T cells in the tumor microenvironment of EOC Methods A total of 41 patients with stage IIIC and IV EOC were included in the analysis. We harvested cells from malignant ascites and investigated them using multi-color flow cytometry. We categorized the Tregs into 3 groups: effector-type Tregs, naïve Tregs and non-Tregs, based on the expression patterns of CD45RA and Foxp3 in CD4+ T cells. Furthermore, the relationships between the expression of various immune checkpoint molecules, such as PD-1, on CD8+T cells and each of the Treg subtypes was also evaluated. Results The median frequency of naïve Tregs, effector-type Tregs and non-Tregs were 0.2% (0-0.8), 2.0% (0-11.4) and 1.5% (0.1-6.3) in CD4+ T cells of malignant ascites from EOC patients, respectively. A high frequency of effector-type Tregs was associated with high-grade serous carcinoma compared with the other histotypes. Patients with higher proportions of effector-type Tregs showed a trend towards increased progression-free survival. We also demonstrated a correlation between a higher proportion of effector-type Tregs and increased PD-1 expression on CD8+ T cells. In addition, C-C chemokine receptor 4 expression was also observed in effector-type Tregs. Conclusion These data suggest that multiple immune-inhibitory networks exist in malignant ascites from EOC patients, suggesting an approach towards combinational immunotherapies for advanced EOC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hannah-Lou Schilling ◽  
Gunther Glehr ◽  
Michael Kapinsky ◽  
Norbert Ahrens ◽  
Paloma Riquelme ◽  
...  

Treatment of advanced melanoma with combined immune checkpoint inhibitor (ICI) therapy is complicated in up to 50% of cases by immune-related adverse events (irAE) that commonly include hepatitis, colitis and skin reactions. We previously reported that pre-therapy expansion of cytomegalovirus (CMV)-reactive CD4+ effector memory T cells (TEM) predicts ICI-related hepatitis in a subset of patients with Stage IV melanoma given αPD-1 and αCTLA-4. Here, we develop and validate a 10-color flow cytometry panel for reliably quantifying CD4+ TEM cells and other biomarkers of irAE risk in peripheral blood samples. Compared to previous methods, our new panel performs equally well in measuring CD4+ TEM cells (agreement = 98%) and is superior in resolving CD4+ CD197+ CD45RA- central memory T cells (TCM) from CD4+ CD197+ CD45RA+ naive T cells (Tnaive). It also enables us to precisely quantify CD14+ monocytes (CV = 6.6%). Our new “monocyte and T cell” (MoT) assay predicts immune-related hepatitis with a positive predictive value (PPV) of 83% and negative predictive value (NPV) of 80%. Our essential improvements open the possibility of sharing our predictive methods with other clinical centers. Furthermore, condensing measurements of monocyte and memory T cell subsets into a single assay simplifies our workflows and facilitates computational analyses.


2021 ◽  
Vol 11 (11) ◽  
pp. 1482
Author(s):  
Priyanka Chauhan ◽  
Wen S. Sheng ◽  
Shuxian Hu ◽  
Sujata Prasad ◽  
James R. Lokensgard

The role of select pro- and anti-inflammatory mediators in driving microglial cell polarization into classically (M1), or alternatively, (M2) activated states, as well as the subsequent differential responses of these induced phenotypes, was examined. Expression of PD-L1, MHC-II, MHC-I, arginase 1 (Arg-1), and inducible nitric oxide synthase (iNOS) was assessed using multi-color flow cytometry. We observed that both pro- and anti-inflammatory mediators induced PD-L1 expression on non-polarized microglia. Moreover, IFN-γ stimulated significant MHC class I and II expression on these cells. Interestingly, we observed that only IL-4 treatment induced Arg-1 expression, indicating M2 polarization. These M2 cells were refractory to subsequent depolarization and maintained their alternatively activated state. Furthermore, PD-L1 expression was significantly induced on these M2-polarized microglia after treatment with pro-inflammatory mediators, but not anti-inflammatory cytokines. In addition, we observed that only LPS induced iNOS expression in microglial cells, indicating M1 polarization. Furthermore, IFN-γ significantly increased the percentage of M1-polarized microglia expressing iNOS. Surprisingly, when these M1-polarized microglia were treated with either IL-6 or other anti-inflammatory cytokines, they returned to their non-polarized state, as demonstrated by significantly reduced expression of iNOS. Taken together, these results demonstrate differential responses of microglial cells to mediators present in dissimilar microenvironments.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1625-1625
Author(s):  
Anwar Khan ◽  
Nagehan Pakasticali ◽  
Omar Fathalla ◽  
Taiga Nishihori ◽  
Mohammad O Hussaini

Abstract Introduction: Detection of minimal residual disease (MRD) is one of the strongest predictors of outcome in multiple myeloma (MM). Until recently, the most commonly available method to detect MRD in clinical practice has been high sensitivity flow cytometry (FC) which can detect MRD with at 10 -5 sensitivity. In recent years, next-generation sequencing (NGS) has become a viable method to assess the MRD in MM patients with a 10 -6 sensitivity. NGS appears to have some advantages over HC-FC by circumventing subjectivity of analysis. However, real-world comparison between these two methodologies in the literature is limited and is important to inform daily hematopathology and oncology ordering practices. Methods: We retrospectively identified all cases of MM with NGS MRD data from bone marrow specimens at the Moffitt Cancer Center and collated corresponding flow MRD data and clinical data (OS, patient demographics) electronically and via chart review. 10-color flow cytometry was performed on a Gallios System and analyzed on Kaluza (Beckman Coulter, IN). Two million events were collected on all cells. Validated lower limit of detection was at least 0.01%. Antibodies included CD28, CD81, CD56, CD138, CD319, CD20, CD19, CD117, CD38, CD45, CD27, CD200 (BD, Biolegend, Beckman Coulter). clonoSEQ ® (Adaptive Biotechnologies, Seattle, WA) testing was performed which uses multiplex polymerase chain reaction (PCR) and NGS to identify, characterize, and monitor clonotypes of immunoglobulin (Ig) IgH (V-J), IgH (D-J), IgK, and IgL receptor gene sequences, and translocated BCL1/IgH (J) and BCL2/IgH (J) sequences Statistical analysis was performed by Spearman correlation coefficient and Kaplan-Meier analysis. Results: 192 samples from 122 unique patients were identified that had both NGS and FC data performed on the same sample. FC+ values ranged from 1x10 -7 to 0.39. NGS+ values ranged from 2.3 x 10 -7 to 0.15. Spearman correlation coefficient showed moderate concordance between NGS and FC at r=0.67 (p<0.001). Six samples were positive by FC (mean tumor burden (MTB)= 0.0007) but missed by NGS; whereas 59 samples were positive by NGS (MTB= 0.002) but missed by flow cytometry. Two cases by FC were equivocal and these were both definitively designated as MRD+ by NGS. Overall survival was worse for MRD+ (by NGS or FC) vs MRD(-) (Figure 1). Conclusion: Our study confirms the importance of MRD detection in MM and shows the robust utility of NGS for MRD detection in routine hematopathology practice. While both FC and NGS are complementary given that each can potentially detect MRD missed by another method, the data supports the increased sensitivity of NGS over FC. Figure 1 Figure 1. Disclosures Nishihori: Novartis: Research Funding; Karyopharm: Research Funding. Hussaini: Stemeline Therapeutics: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4029-4029
Author(s):  
Jenifer Vaughan ◽  
Tracey Monica Wiggill ◽  
Pascale Willem ◽  
Nikki Bouwer ◽  
Katherine Hodkinson

Abstract Introduction Lymphoblastic leukemia (ALL) is a neoplasm of immature lymphoid cells of either B- or T-cell lineage. B-ALL is the more common (particularly in childhood), and has a number of described recurrent genetic abnormalities with distinct clinic-pathological associations. T-ALL comprises a larger proportion of adult ALL (18-23%) than childhood cases (7-15%) in high income countries, and is genetically heterogeneous without clear prognostic associations with genetic subtypes. The frequency of T-ALL and the genetic landscape of B-ALL show regional variation. T-ALL is common among African American children (~25%), but seen infrequently in Asia (~7% of childhood cases). In B-ALL, the translocation t(12;21) and hyperdiploidy predominate among children in Europe and the USA, while KMT2A rearrangement and the translocation t(9;22) are relatively more common in Asia. There is a paucity of literature regarding ALL in Africa; the distribution of its subtypes (B vs T), its genetic composition and outcomes are not known. This study aimed to characterize ALL diagnosed in the state-sector hospitals of Johannesburg, South Africa (SA). Methods Cases diagnosed with ALL in the flow cytometry laboratory at Charlotte Maxeke Johannesburg Academic Hospital (which provides diagnostic immunophenotyping services to all state-sector hospitals of the southern Gauteng region of SA) between 2016-2019 (42 months) were identified and recorded in a database. Pertinent information was documented from the laboratory information system. Results ALL was diagnosed in 181 patients over the time period; pertinent clinical information is reported in Table 1. T-ALL was substantially more common than reported elsewhere, comprising 31.5% and 35.2% of childhood and adult ALL, respectively. Differences were evident in the cytogenetic patterns seen in both B- and T-ALL as compared to other parts of the world. In B-ALL the translocation t(1;19) (which occurs in <10% of cases elsewhere) was the most common recurrent genetic abnormality (23.7%), and the t(9;22) had a relatively high frequency in children <13 years (8.8%) (Figure 1). In T-ALL, karyotypic abnormalities were more common than typical (seen in 80.0% of cases vs 50-70% elsewhere), with derangements of chromosome 6q being the most frequent (19%). The translocation t(10;11) (PICALM-MLLT10) and abnormalities involving the TLX1 (HOX11) and TLX3 (HOX 11L2) genes (which are among the more frequent genetic abnormalities reported internationally) were all uncommon, each occurring in only 2.4% of the cases. Disease outcomes were substantially poorer compared to those reported in high income countries, where survival rates in childhood T-ALL range from 60-80% and exceed 90% in B-ALL. At a median follow-up time of 36 months, only 68.2% (B-ALL) and 27.8% (T-ALL) of children <10 years were alive, while mortality rates among adults exceeded 80% in both T- (86.7%) and B-ALL (83.3%). Survival in patients with T-ALL did not differ between those with high vs low risk clinical features (age >10 years, white cell count >100 x10 9/L), and was significantly worse as compared to those with B-ALL (p = 0.01). Relapse was the dominant cause of death in children <10 years (more so in those with T-ALL), while death due to chemotherapy-related neutropenic sepsis was more common in older patients (particularly those with B-ALL) (Figure 2). Factors associated with disease relapse in B-ALL included KMT2A rearrangement and measurable residual disease (MRD) after induction chemotherapy (as defined by non-quantitative, non-allele specific PCR of IgH/T-cell receptor gene rearrangement status and 4 color flow cytometry (both with sensitivities >0.1%)). Notably, the high risk of relapse associated with MRD was not seen in patients with t(9;22), likely due to the use of targeted molecular therapy in these cases. No significant predictors of survival were identified in T-ALL, but the presence of MRD post-induction was associated with early death due to relapse (<12 months). Conclusion ALL in SA shows distinct differences in the cytogenetic landscape, disease patterns and outcomes. The cause of the poor survival rates likely includes differences in tumour/host biology, late presentation, restricted access to haemopoietic stem cell transplantation in the SA state-sector, and suboptimal neutropenic support. Although rudimentary, available MRD testing is a valuable risk predictor in both B- and T-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3469-3469
Author(s):  
Simon Renders ◽  
Aino-Maija Leppä ◽  
Alexander Waclawiczek ◽  
Maike Janssen ◽  
Elisa Donato ◽  
...  

Abstract Treatment with Hypomethylating agents (HMA) such as 5-Azazytidine (AZA) in combination with the BCL-2 inhibitor Venetoclax (VEN) has recently become the standard of care for AML patients unsuitable for intensive induction chemotherapy and shows results superior to treatment with AZA alone (DiNardo et al., 2020, NEJM). However upfront resistance and relapse following initial response remain major obstacles. It has recently been proposed that monocytic differentiation predicts resistance to AZA/VEN treatment in AML (Pei et al., 2020 Cancer Discovery). This appears to be due to increased expression of other anti-apoptotic proteins such as MCL-1 in monocytic AMLs, which conveys resistance to AZA/VEN therapy, as survival of leukemic cells in these patients is no longer dependent on BCL-2. However, an independent study found no impaired outcome in patients with monocytic AMLs treated with HMA/VEN (Maiti et al., 2020, Blood, ASH abstract). Here, we show that monocytic AML cell lines and bulk cells of monocytic primary AML cells are indeed intrinsically resistant to AZA/VEN treatment. However, in a collective of 30 patients treated with HMA/VEN at Heidelberg University Medical Center between 2018 and 2020, monocytic differentiation assessed by flow cytometry was not an independent risk factor for refractory disease. We hypothesized that the conflicting data may be caused by intra-patient heterogeneity of AZA/VEN sensivitity and assessed killing efficiency in various immunophenotypic subpopulations of 12 primary AML patient samples in vitro. The CD64 +CD11b +, differentiated blast population made up >50% of leukemic cells in monocytic and <20% in primitive samples and showed high levels of resistance to AZA/VEN therapy in both primitive and monocytic leukemias but did not engraft when transplanted into NSG mice, arguing they do not contain leukemic stem cells (LSC). In contrast, we found immature CD64 -CD11b - GPR56 + LSC to be sensitive to AZA/VEN treatment irrespective whether they were derived from monocytic or primitive types of primary AMLs. As expected, LSCs from either monocytic or primitive AMLs initiated disease in NSG mice, highlighting that targeting LSCs is essential for the effect of AML therapy. Next, we investigated expression of BCL-2, MCL-1 and BCL-xL in the same primary patient samples and observed high MCL-1 expression in monocytic AML samples. However, MCL-1 expression was restricted to the CD64 +CD11b + population whereas in the LSC sub-populations robust expression of BCL-2 but low levels of MCL-1 and BCL-xL were detected, independent of whether monocytic or primitive AMLs were analyzed. To further validate the sensitivity of LSCs of monocytic AML to BCL-2-I, we established a platform combining BH-3 profiling with multi-color flow cytometry, allowing for single cell assessment of cellular dependencies on independent apoptotic pathways. We found that LSCs of both AML types show high VEN/BAD but low MS-1 induced apoptosis, functionally confirming the expression patterns of BCL-2 and MCL-1. As LSCs are rare in monocytic samples, investigation of samples in bulk are dominated by MCL-1 expressing and resistant non-LSCs, explaining the overall higher MCL-1 expression/survival of monocytic compared to immature AML cells. However, our data uncovers sensitivity of LSCs to AZA/VEN independent of overall monocytic or primitive sample classification and provide a mechanistic explanation for the clinical data of Maiti et al. and our Heidelberg AML collective, which found no increased resistance of monocytic AMLs to AZA/VEN treatment. Disclosures Unglaub: JazzPharma: Consultancy, Other: travel costs/ conference fee; Novartis: Consultancy, Other: travel costs/ conference fee. Schlenk: Abbvie: Honoraria; Agios: Honoraria; Astellas: Honoraria, Research Funding, Speakers Bureau; Celgene: Honoraria; Daiichi Sankyo: Honoraria, Research Funding; Hexal: Honoraria; Neovio Biotech: Honoraria; Novartis: Honoraria; Pfizer: Honoraria, Research Funding, Speakers Bureau; Roche: Honoraria, Research Funding; AstraZeneca: Research Funding; Boehringer Ingelheim: Research Funding. Müller-Tidow: Janssen: Consultancy, Research Funding; Bioline: Research Funding; Pfizer: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2713-2713
Author(s):  
Naveen K Yarlagadda ◽  
Meera Mohan ◽  
Shebli Atrash ◽  
Sravani Gundarlapalli ◽  
Shadiqul Hoque ◽  
...  

Abstract Introduction: Flow cytometric immunophenotyping is considered an indispensable tool for the diagnosis, classification, and monitoring of plasma cell disorders. Herein, we seek to study the clinical significance of expression of phenotype markers in monoclonal gammopathy of unknown significance (MGUS). Methods: We identified a cohort of patients with a diagnosis of MGUS from the institutional myeloma database. Bone marrow (BM) aspirate assessment was performed using 8-color immunophenotypic next-generation flow cytometric (NGF) analysis with a minimum sensitivity of 10 -5 cells at the time of diagnosis or first visit to our institution. BM aspirate samples were immunophenotyped on a FACSCanto II flow cytometer using antibodies (BD) to delineate normal and abnormal plasma cells [CD138 (V-500), CD38 (FITC), CD19 (PE-Cy7), CD45 (V-450), CD27 (PercpCy5.5), CD81 (APC-H-7), CD56 (APC) and CD20 (PE)]. The sensitivity or the Limit of Detection (LOD) for this assay was validated to 20 cells in 2 ×10 6 events (0.001%), and the reproducibility or Lower Limit of Quantitation (LLOQ) is 50 cells in 2 ×10 6 events. Clinical and laboratory variables were also collected. Based on previously published data, expression (CD19, CD45, CD81), and lack of expression (CD56, CD27, CD20) of the above-mentioned surface antigens were analyzed. Additional variables such as IgA isotype, size of M-protein (≥15 g/L), and abnormal free light chain ratio(abnFLR) (defined as <0.1 or >10) were included in regression fitting models. Results: A total of 157 patients with MGUS were included in this analysis. The median age at diagnosis was 60 years (range 24- 84), 84 (53 %) patients were female and 25 (16%) were African American. Overall, IgG Kappa (75/148, 50%) was the most common isotype. Fluorescent-in-situ hybridization (FISH) data were available in 35 patients with t (4:14) and t (14;16) seen in 3 patients each. At a median follow-up of 18.15 years (quantiles 11.35, 33.62), 28 patients experienced disease progression (25 to MM, 2 to Waldenstrom macroglobulinemia, and 1 Smoldering myeloma). The median progression-free survival of this cohort was 17.3 years. Among these, occurrences of the bone lesion (8/28; 28.6%) were the most common pattern of disease progression to MM. This analysis showed lower odds of progression with the expression of CD27 (OR-0.39, 95% CI 0.15-0.99) (figure 1A). Disease progression was more common in patients with an abnormal plasma cell clone size ≥ of 3.1% at diagnosis (60% vs. 12.5%, p=0.0005). An abnormal plasma cell clone of ≥3.1% at diagnosis, was associated with increased odds of progression (OR-10.79, 95% CI 4.02-28.98) and a shorter PFS (12.5 years versus NR, p=0.01) (figure 1B). Serum M-spike ≥1.5 g/dL (OR-3.54;95% 1.30-9.62) and abnFLR (OR-2.30, 95% CI 1.00-5.32) were also associated with a higher odds of progression. However, in this population, the presence of IgA isotype did not increase the odds of MGUS progression. In a stepwise regression model, serum M-spike≥1.5 g/dL, abnFLR, and the lack of expression of CD27 were associated with the risk of disease progression. Conclusion: In addition to previously published risk factors, our cohort shows that the expression of CD27 antigen by eight-color flow cytometry confers a lower risk of disease progression of MGUS. This is consistent with our previous report that CD27 is progressively down-regulated in the transition from normal plasma cells (NPC) to MGUS to MM (Zhan et al, Blood 2006). Furthermore, we show that size of the myeloma clone (≥ 3.1% ) is a possible surrogate marker for disease progression in MGUS. Figure 1: 1A shows forest plot of odds ratios for flow cytometry markers, IgA isotype, size of M protein, abnFLR and plasma cell clone size. 1B shows the Kaplan Meier estimates of PFS for patients stratifies by plasma cell clone size. Figure 1 Figure 1. Disclosures Mohan: Medical College of Wisconsin: Current Employment. Atrash: GSK: Research Funding; AMGEN: Research Funding; Jansen: Research Funding, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2640-2640
Author(s):  
Danielle S. Wallace ◽  
Andrea M. Baran ◽  
Jonathan W. Friedberg ◽  
Patrick M. Reagan ◽  
Carla Casulo ◽  
...  

Abstract Background: Continuous Bruton's tyrosine kinase (BTK) inhibition represents an effective and easily administered oral therapy for patients with CLL; however, it is not curative, can have serious side effects, and is expensive. Novel combinations may provide deep remissions allowing fixed duration therapy. The second generation BTK inhibitor acalabrutinib (ACALA) has demonstrated an improved safety profile compared to ibrutinib. Importantly, unlike ibrutinib, ACALA does not inhibit anti-CD20 monoclonal antibody dependent cellular phagocytosis (VanDerMeid et al, Cancer Immuno Res 2018). Using standard doses, rituximab (RTX) rapidly exhausts the finite innate immune system cytotoxic capacity (Pinney, et al Blood 2020) and also causes loss of cell membrane CD20 from CLL cells by trogocytosis. Previous studies have shown that high frequency low dose (HFLD) IV RTX (20mg/m 2 three times per week) was effective and limited loss of CD20 (Zent, et al Am J Hematol, 2014). Subcutaneous (SQ) RTX is FDA approved in CLL, has similar efficacy and pharmacokinetics, and can be self-administered. This phase II study tested the efficacy and tolerability of the combination of ACALA and HFLD RTX as initial treatment for patients with treatment-naïve CLL. Methods: Eligible patients were treated with 50mg RTX on day 1 and 3 of each week for six 28-day cycles. The first dose was administered IV over 2 hours. If tolerated, subsequent doses were SQ and could be self-administered at home by trained patients. ACALA 100mg BID therapy was initiated on cycle 1 day 8 for a minimum of 12 cycles. Treatment response was assessed during cycles 12 and 24. Patients achieving an iwCLL complete response (CR) with undetectable minimal residual disease (uMRD) by 6-color flow cytometry (£ 1:10 -4)at either time point could stop therapy. The primary objective was to determine the rate of iwCLL CR with a secondary endpoint of rate of uMRD. Results: 37 patients have been treated with a median follow-up of 14 months. Baseline demographics were male/female (22/15) and median age 67 years (range 40-78). High-risk genetic features included TP53 mutation (21.6%), del17p (13.5%), del 11q (16.2%), unmutated IGHV (62.2%), NOTCH1 mutation (21.6%) and SF3B1 mutation (10.8%). Grade 3/4 AEs occurring in ≥5% of patients were infections (13.5%), neutropenia (8.1%) and anemia (8.1%). No patients discontinued therapy due to AEs and there were no deaths on treatment. The most common (≥20%) AEs (all grades and all causality) were infusion-related reactions (62.1%), infections (56.8%) (upper respiratory infections in 29.7% of patients, urinary tract infections in 18.9%, COVID-19 pneumonia in 8.1%), fatigue (51.3%), anemia (51.3%), headache (43.2%), rash or other skin changes (32.4%), thrombocytopenia (29.7%), bruising (27.0%), and diarrhea (21.6%). Injection site reactions (8.1%) from SQ RTX were grade 1. Three patients contracted COVID-19 while on study during times of high community transmission prior to the availability of vaccines. Two required hospitalization, one contracted the virus following cycle 1 requiring a delay in RTX, and all patients remained on ACALA while COVID-19 positive. 27 patients have completed 12 cycles and been evaluated for response. All patients responded with 1 MRD+ CR, 20 partial responses (PR), and 6 PR with sustained lymphocytosis. 10 of these patients have completed 24 cycles and had a sustained PR. One patient with del17p and TP53 mutation had progressive disease after 25 cycles of therapy. All other patients remain on treatment per protocol. Conclusion: HFLD RTX and ACALA is a tolerable, effective and convenient therapy that could be the basis for regimens incorporating other novel agents. It is notable that three patients have contracted COVID-19 during the trial; however, none required intubation, and all remained on ACALA during their infection. This at-home combination markedly decreased patient infection risk during the COVID-19 pandemic. This regimen has the potential to enable RTX to be administered at facilities with limited medical IV infusion capacity which could be very useful in rural and economically disadvantaged areas. While all patients have responded to therapy, no patients to date have achieved an uMRD CR, suggesting that additional agents are required to allow for time-limited treatment. Disclosures Baran: AstraZeneca/Acerta: Research Funding. Friedberg: Novartis: Other: DSMC ; Acerta: Other: DSMC ; Bayer: Other: DSMC . Reagan: Kite, a Gilead Company: Consultancy; Genentech: Research Funding; Seagen: Research Funding; Curis: Consultancy. Casulo: Verastem: Research Funding; Genentech: Research Funding; BMS: Research Funding; Gilead: Research Funding. Zent: TG Therapeutics: Research Funding; Acerta/AstraZeneca: Research Funding. Barr: Morphosys: Consultancy; Janssen: Consultancy; Bristol Meyers Squibb: Consultancy; AstraZeneca: Consultancy; Genentech: Consultancy; TG Therapeutics: Consultancy; Beigene: Consultancy; Seattle Genetics: Consultancy; Abbvie/Pharmacyclics: Consultancy; Gilead: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document