Large-scale sound field rendering with graphics processing unit cluster for three-dimensional audio with loudspeaker array

2013 ◽  
Author(s):  
Takao Tsuchiya ◽  
Yukio Iwaya ◽  
Makoto Otani
Author(s):  
Alan Gray ◽  
Kevin Stratford

Leading high performance computing systems achieve their status through use of highly parallel devices such as NVIDIA graphics processing units or Intel Xeon Phi many-core CPUs. The concept of performance portability across such architectures, as well as traditional CPUs, is vital for the application programmer. In this paper we describe targetDP, a lightweight abstraction layer which allows grid-based applications to target data parallel hardware in a platform agnostic manner. We demonstrate the effectiveness of our pragmatic approach by presenting performance results for a complex fluid application (with which the model was co-designed), plus separate lattice quantum chromodynamics particle physics code. For each application, a single source code base is seen to achieve portable performance, as assessed within the context of the Roofline model. TargetDP can be combined with Message Passing Interface (MPI) to allow use on systems containing multiple nodes: we demonstrate this through provision of scaling results on traditional and graphics processing unit-accelerated large scale supercomputers.


2021 ◽  
Vol 87 (5) ◽  
pp. 363-373
Author(s):  
Long Chen ◽  
Bo Wu ◽  
Yao Zhao ◽  
Yuan Li

Real-time acquisition and analysis of three-dimensional (3D) human body kinematics are essential in many applications. In this paper, we present a real-time photogrammetric system consisting of a stereo pair of red-green-blue (RGB) cameras. The system incorporates a multi-threaded and graphics processing unit (GPU)-accelerated solution for real-time extraction of 3D human kinematics. A deep learning approach is adopted to automatically extract two-dimensional (2D) human body features, which are then converted to 3D features based on photogrammetric processing, including dense image matching and triangulation. The multi-threading scheme and GPU-acceleration enable real-time acquisition and monitoring of 3D human body kinematics. Experimental analysis verified that the system processing rate reached ∼18 frames per second. The effective detection distance reached 15 m, with a geometric accuracy of better than 1% of the distance within a range of 12 m. The real-time measurement accuracy for human body kinematics ranged from 0.8% to 7.5%. The results suggest that the proposed system is capable of real-time acquisition and monitoring of 3D human kinematics with favorable performance, showing great potential for various applications.


Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Piroz Zamankhan

The air-water mixture from an artificially aerated spillway flowing down to a canyon may cause serious erosion and damage to both the spillway surface and the environment. The location of an aerator, its geometry, and the aeration flow rate are important factors in the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and computational fluid dynamics (CFD) modeling is presented. The numerical modeling used was a large eddy simulation technique (LES) combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing unit (GPU). The result of this analysis in the form of design suggestions may help diminishing the hazards associated with cavitation.


Author(s):  
Timothy Dykes ◽  
Claudio Gheller ◽  
Marzia Rivi ◽  
Mel Krokos

With the increasing size and complexity of data produced by large-scale numerical simulations, it is of primary importance for scientists to be able to exploit all available hardware in heterogenous high-performance computing environments for increased throughput and efficiency. We focus on the porting and optimization of Splotch, a scalable visualization algorithm, to utilize the Xeon Phi, Intel’s coprocessor based upon the new many integrated core architecture. We discuss steps taken to offload data to the coprocessor and algorithmic modifications to aid faster processing on the many-core architecture and make use of the uniquely wide vector capabilities of the device, with accompanying performance results using multiple Xeon Phi. Finally we compare performance against results achieved with the Graphics Processing Unit (GPU) based implementation of Splotch.


2011 ◽  
Vol 1 (32) ◽  
pp. 8 ◽  
Author(s):  
Robert Weiss ◽  
Andrew James Munoz ◽  
Robert A. Dalrymple ◽  
Alexis Herault ◽  
Giuseppe Bilotta

Tsunamis need to be studied more carefully and quantitatively to fully understand their destructive impact on coastal areas. Numerical modeling provides an accurate and useful method to model tsunami inundations on a coastline. However, models must undergo a detailed verification and validation process to be used as an accurate hazard assessment tool. Using standards and procedures given by NOAA, a new code in hydrodynamic modeling called GPU-SPHysics can be verified and validated for use as a tsunami inundation model. GPU-SPHysics is a meshless, Lagrangian code that utilizes the computing power of the Graphics Processing Unit (GPU) to calculate high resolution hydrodynamic simulations using the equations given by Smooth Particle Hydrodynamics (SPH). GPU-SPHysics has proven to be an accurate tool in modeling complex tsunami inundations, such as the inundation on a conical island, when tested against extensive laboratory data.


Sign in / Sign up

Export Citation Format

Share Document