Sound source localization from tactile aids for unilateral cochlear implant users

2013 ◽  
Vol 134 (5) ◽  
pp. 4062-4062 ◽  
Author(s):  
Xuan Zhong ◽  
Shuai Wang ◽  
Michael Dorman ◽  
William Yost
2015 ◽  
Vol 20 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Michael F. Dorman ◽  
Daniel Zeitler ◽  
Sarah J. Cook ◽  
Louise Loiselle ◽  
William A. Yost ◽  
...  

In this report, we used filtered noise bands to constrain listeners' access to interaural level differences (ILDs) and interaural time differences (ITDs) in a sound source localization task. The samples of interest were listeners with single-sided deafness (SSD) who had been fit with a cochlear implant in the deafened ear (SSD-CI). The comparison samples included listeners with normal hearing and bimodal hearing, i.e. with a cochlear implant in 1 ear and low-frequency acoustic hearing in the other ear. The results indicated that (i) sound source localization was better in the SSD-CI condition than in the SSD condition, (ii) SSD-CI patients rely on ILD cues for sound source localization, (iii) SSD-CI patients show functional localization abilities within 1-3 months after device activation and (iv) SSD-CI patients show better sound source localization than bimodal CI patients but, on average, poorer localization than normal-hearing listeners. One SSD-CI patient showed a level of localization within normal limits. We provide an account for the relative localization abilities of the groups by reference to the differences in access to ILD cues.


Ear & Hearing ◽  
2020 ◽  
Vol 41 (6) ◽  
pp. 1660-1674
Author(s):  
M. Torben Pastore ◽  
Sarah J. Natale ◽  
Colton Clayton ◽  
Michael F. Dorman ◽  
William A. Yost ◽  
...  

2016 ◽  
Vol 21 (3) ◽  
pp. 127-131 ◽  
Author(s):  
Michael F. Dorman ◽  
Louise H. Loiselle ◽  
Sarah J. Cook ◽  
William A. Yost ◽  
René H. Gifford

Objective: Our primary aim was to determine whether listeners in the following patient groups achieve localization accuracy within the 95th percentile of accuracy shown by younger or older normal-hearing (NH) listeners: (1) hearing impaired with bilateral hearing aids, (2) bimodal cochlear implant (CI), (3) bilateral CI, (4) hearing preservation CI, (5) single-sided deaf CI and (6) combined bilateral CI and bilateral hearing preservation. Design: The listeners included 57 young NH listeners, 12 older NH listeners, 17 listeners fit with hearing aids, 8 bimodal CI listeners, 32 bilateral CI listeners, 8 hearing preservation CI listeners, 13 single-sided deaf CI listeners and 3 listeners with bilateral CIs and bilateral hearing preservation. Sound source localization was assessed in a sound-deadened room with 13 loudspeakers arrayed in a 180-degree arc. Results: The root mean square (rms) error for the NH listeners was 6 degrees. The 95th percentile was 11 degrees. Nine of 16 listeners with bilateral hearing aids achieved scores within the 95th percentile of normal. Only 1 of 64 CI patients achieved a score within that range. Bimodal CI listeners scored at a level near chance, as did the listeners with a single CI or a single NH ear. Listeners with (1) bilateral CIs, (2) hearing preservation CIs, (3) single-sided deaf CIs and (4) both bilateral CIs and bilateral hearing preservation, all showed rms error scores within a similar range (mean scores between 20 and 30 degrees of error). Conclusion: Modern CIs do not restore a normal level of sound source localization for CI listeners with access to sound information from two ears.


2014 ◽  
Vol 35 (6) ◽  
pp. 633-640 ◽  
Author(s):  
Michael F. Dorman ◽  
Louise Loiselle ◽  
Josh Stohl ◽  
William A. Yost ◽  
Anthony Spahr ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


Sign in / Sign up

Export Citation Format

Share Document