The role of age and executive function in auditory category learning

2015 ◽  
Vol 137 (4) ◽  
pp. 2208-2209
Author(s):  
Rachel Reetzke ◽  
Todd Maddox ◽  
Bharath Chandrasekaran
2016 ◽  
Vol 142 ◽  
pp. 48-65 ◽  
Author(s):  
Rachel Reetzke ◽  
W. Todd Maddox ◽  
Bharath Chandrasekaran

2021 ◽  
Vol 163 (5) ◽  
pp. 1229-1237 ◽  
Author(s):  
Rickard L Sjöberg

Abstract Background Research suggests that unconscious activity in the supplementary motor area (SMA) precedes not only certain simple motor actions but also the point at which we become aware of our intention to perform such actions. The extent to which these findings have implications for our understanding of the concepts of free will and personal responsibility has been subject of intense debate during the latest four decades. Methods This research is discussed in relation to effects of neurosurgical removal of the SMA in a narrative review. Results Removal of the SMA typically causes a transient inability to perform non-stimulus-driven, voluntary actions. This condition, known as the SMA syndrome, does not appear to be associated with a loss of sense of volition but with a profound disruption of executive function/cognitive control. Conclusions The role of the SMA may be to serve as a gateway between the corticospinal tract and systems for executive function. Such systems are typically seen as tools for conscious decisions. What is known about effects of SMA resections would thus seem to suggest a view that is compatible with concepts of personal responsibility. However, the philosophical question whether free will exists cannot be definitely resolved on the basis of these observations.


Author(s):  
Elizabeth Kazakoff Myers

This chapter summarizes theoretical connections between computational thinking through learning to code, self-regulation, and executive function and discusses why it is important to continue exploring the intersection of executive function, self-regulation, and computational thinking, including the need to revisit the socio-cultural underpinnings of foundational self-regulation, executive function, and school readiness research. As an example, findings from a 2014 study that explored the relationship between self-regulation and computational thinking when learning to code are shared. Research supports the idea of teaching computational thinking skills within an integrated early childhood curriculum to support the development of well-prepared citizens for the 21st century by drawing on the connections between executive function, self-regulation, and computational thinking.


Sign in / Sign up

Export Citation Format

Share Document