Nonlinear damage detection and localization via an innovative metamaterial-based sensor

2016 ◽  
Vol 139 (4) ◽  
pp. 2013-2013 ◽  
Author(s):  
Marco Miniaci ◽  
Anastasiia Krushynska ◽  
Federico Bosia ◽  
Antonio Gliozzi ◽  
Marco Scalerandi ◽  
...  
2018 ◽  
Vol 148 ◽  
pp. 14008 ◽  
Author(s):  
Stanislav Stoykov ◽  
Emil Manoach ◽  
Maosen Cao

The early detection and localization of damages is essential for operation, maintenance and cost of the structures. Because the frequency of vibration cannot be controlled in real-life structures, the methods for damage detection should work for wide range of frequencies. In the current work, the equation of motion of rotating beam is derived and presented and the damage is modelled by reduced thickness. Vibration based methods which use Poincaré maps are implemented for damage localization. It is shown that for clamped-free boundary conditions these methods are not always reliable and their success depends on the excitation frequency. The shapes of vibration of damaged and undamaged beams are shown and it is concluded that appropriate selection criteria should be defined for successful detection and localization of damages.


2018 ◽  
Vol 51 (24) ◽  
pp. 941-948 ◽  
Author(s):  
Mahjoub El Mountassir ◽  
Gilles Mourot ◽  
Slah Yaacoubi ◽  
Didier Maquin

Sign in / Sign up

Export Citation Format

Share Document