Centerline rumble strip sound level evaluation—Comparison of four designs

2016 ◽  
Vol 140 (4) ◽  
pp. 3094-3094
Author(s):  
David Braslau ◽  
Edward Terhaar ◽  
Katie Fleming
Keyword(s):  
2013 ◽  
Vol 723 ◽  
pp. 113-120 ◽  
Author(s):  
Jae Jun Lee ◽  
Deok Soon An ◽  
Jae Kyu Lim ◽  
Soo Ahn Kwon ◽  
Hyeon Jang Son ◽  
...  

Transverse rumble strips were commonly installed on approaches to intersections, toll plazas, and horizontal curves. The main function is to alert drivers by creating noise and vibration. This TRS has been demonstrated to be effective in reducing traffic accident due to sleeping. However, there are some disadvantages in its utilization, such as traffic noise produced by TRS. The objective of this study was to quantify the level of traffic noise; to verify the effects of speed and TRS shapes. Two types of vehicles [sedan and minivan] were driven over four different patterns of TRS and over cement concrete pavement at four different speeds. Researchers measured the produce noise at 7.5m distance with 1.2 m height from center of the vehicle lane at each test section. Results indicate that vehicle type, speed, TRS shape affects created traffic noise. The sound level of Type A was statistically highest among others.


2015 ◽  
Vol 137 (4) ◽  
pp. 2319-2319
Author(s):  
David Braslau ◽  
Edward Terhaar
Keyword(s):  

2018 ◽  
Vol 34 ◽  
pp. 02026
Author(s):  
N. Darus ◽  
Z. Haron ◽  
K. Yahya ◽  
M.H. Abd Halil ◽  
W.M.A. Norudin ◽  
...  

Transverse Rumble Strips (TRS) acts as safety device that alert inattentive drivers from potential dangers. However, the noise produced due to TRS was reported as noise annoyance among the nearby residents lived adjacent to roadways. Thus, this paper investigates the impulsivity characteristic of noise due to single lightweight vehicles transit on TRS. The objectives of this study are to determine the increase of sound level and to evaluate the impulsivity of noise. Two TRS profiles namely middle overlapped (MO) and middle layer overlapped (MLO) were selected. Three types of single lightweight vehicles which include hatchback, sedan and multipurpose (MPV) were tested at speed of 30, 50 and 70km/h. The sound level was measured using sound level meter (SLM). Noise indices such as LAeq, LAIeqT, LAImax, LAFmax and LASmax were obtained from the measurement. This study considered the differences of LAImax – LAFmax > 2dBA, LAFmax – LAeq ≥ 10dBA, LAIeqT – LAeq ≥ 2dBA and LAImax – LASmax > 6dBA to evaluate the impulsivity of noise. It was found that TRS increased the sound level by at most of 6dBA. Furthermore, all single lightweight vehicles transit on TRS show significant impulsive characteristic. These results proved that TRS produce significant impact to the nearby residents.


2020 ◽  
Vol 63 (8) ◽  
pp. 2597-2608
Author(s):  
Emily N. Snell ◽  
Laura W. Plexico ◽  
Aurora J. Weaver ◽  
Mary J. Sandage

Purpose The purpose of this preliminary study was to identify a vocal task that could be used as a clinical indicator of the vocal aptitude or vocal fitness required for vocally demanding occupations in a manner similar to that of the anaerobic power tests commonly used in exercise science. Performance outcomes for vocal tasks that require rapid acceleration and high force production may be useful as an indirect indicator of muscle fiber complement and bioenergetic fitness of the larynx, an organ that is difficult to study directly. Method Sixteen women (age range: 19–24 years, M age = 22 years) were consented for participation and completed the following performance measures: forced vital capacity, three adapted vocal function tasks, and the horizontal sprint test. Results Using a within-participant correlational analyses, results indicated a positive relationship between the rate of the last second of a laryngeal diadochokinesis task that was produced at a high fundamental frequency/high sound level and anaerobic power. Forced vital capacity was not correlated with any of the vocal function tasks. Conclusions These preliminary results indicate that aspects of the laryngeal diadochokinesis task produced at a high fundamental frequency and high sound level may be useful as an ecologically valid measure of vocal power ability. Quantification of vocal power ability may be useful as a vocal fitness assessment or as an outcome measure for voice rehabilitation and habilitation for patients with vocally demanding jobs.


Author(s):  
David C. Byrne ◽  
Christa L. Themann ◽  
Deanna K. Meinke ◽  
Thais C. Morata ◽  
Mark R. Stephenson

An audiologist should be the principal provider and advocate for all hearing loss prevention activities. Many audiologists equate hearing loss prevention with industrial audiology and occupational hearing conservation programs. However, an audiologist’s involvement in hearing loss prevention should not be confined to that one particular practice setting. In addition to supervising occupational programs, audiologists are uniquely qualified to raise awareness of hearing risks, organize public health campaigns, promote healthy hearing, implement intervention programs, and monitor outcomes. For example, clinical audiologists can show clients how to use inexpensive sound level meters, noise dosimeters, or phone apps to measure noise levels, and recommend appropriate hearing protection. Audiologists should identify community events that may involve hazardous exposures and propose strategies to minimize risks to hearing. Audiologists can help shape the knowledge, beliefs, motivations, attitudes, and behaviors of individuals toward self-protection. An audiologist has the education, tools, opportunity, and strategic position to facilitate or promote hearing loss surveillance and prevention services and activities. This article highlights real-world examples of the various roles and substantial contributions audiologists can make toward hearing loss prevention goals.


Author(s):  
Dr. Hitesh Paghadar

Increasing environment noise pollution is a matter of great concern and of late has been attracting public attention. Sound produces the minute oscillatory changes in air pressure and is audible to the human ear when in the frequency range of 20Hz to 20 kHz. The chief sources of audible sound are the magnetic circuit of transformer which produces sound due to magnetostriction phenomenon, vibration of windings, tank and other structural parts, and the noise produced by cooling equipments. This paper presents the validation for sound level measurement scale, why A-weighted scale is accepted for sound level measurement, experimental study carried out on 10MVA Power Transformer. Also presents the outcomes of comparison between No-Load sound & Load sound level measurement, experimental study carried out on different transformer like - 10MVA, 50MVA, 100MVA Power Transformer, to define the dominant factor of transformer sound generation.


2019 ◽  
Vol 45 (4) ◽  
pp. 398-410 ◽  
Author(s):  
Ronald A. Kastelein ◽  
Léonie A. E. Huijser ◽  
Suzanne Cornelisse ◽  
Lean Helder-Hoek ◽  
Nancy Jennings ◽  
...  

2010 ◽  
Vol 35 (4) ◽  
pp. 543-550 ◽  
Author(s):  
Wojciech Batko ◽  
Bartosz Przysucha

AbstractAssessment of several noise indicators are determined by the logarithmic mean <img src="/fulltext-image.asp?format=htmlnonpaginated&src=P42524002G141TV8_html\05_paper.gif" alt=""/>, from the sum of independent random resultsL1;L2; : : : ;Lnof the sound level, being under testing. The estimation of uncertainty of such averaging requires knowledge of probability distribution of the function form of their calculations. The developed solution, leading to the recurrent determination of the probability distribution function for the estimation of the mean value of noise levels and its variance, is shown in this paper.


Sign in / Sign up

Export Citation Format

Share Document