High-frequency backscattering enhancements from elastic cylindrical shells in water: Observations and ray theory

2019 ◽  
Vol 146 (4) ◽  
pp. 2797-2797
Author(s):  
Bernard R. Hall ◽  
Philip L. Marston
1979 ◽  
Vol 16 (7) ◽  
pp. 1388-1401 ◽  
Author(s):  
Larry W. Marks ◽  
F. Hron

The classical problem of the incidence of spherical waves on a plane boundary has been reformulated from the computational point of view by providing a high frequency approximation to the exact solution applicable to any seismic body wave, regardless of the number of conversions or reflections from the bottoming interface. In our final expressions the ray amplitude of the interference reflected-head wave is cast in terms of a Weber function, the numerical values of which can be conveniently stored on a computer disk file and retrieved via direct access during an actual run. Our formulation also accounts for the increase of energy carried by multiple head waves arising during multiple reflections of the reflected wave from the bottoming interface. In this form our high frequency expression for the ray amplitude of the interference reflected-head wave can represent a complementary technique to asymptotic ray theory in the vicinity of critical regions where the latter cannot be used. Since numerical tests indicate that our method produces results very close to those obtained by the numerical integration of the exact solution, its combination with asymptotic ray theory yields a powerful technique for the speedy computation of synthetic seismograms for plane homogeneous layers.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. MR1-MR10 ◽  
Author(s):  
Fuyong Yan ◽  
De-Hua Han ◽  
Tongcheng Han ◽  
Xue-Lian Chen

The layer-induced seismic anisotropy of sedimentary strata is frequency-dependent. At the low-frequency limit, the effective anisotropic properties of the layered media can be estimated by the Backus averaging model. At the high-frequency limit, the apparent anisotropic properties of the layered media can be estimated by ray theory. First, we build a database of laboratory ultrasonic measurement on sedimentary rocks from the literature. The database includes ultrasonic velocity measurements on sandstones and carbonate rocks, and velocity-anisotropy measurements on shales. Then, we simulate the sedimentary strata by randomly selecting a certain number of rock samples and using their laboratory measurement results to parameterize each layer. For each realization of the sedimentary strata, we estimate the effective and apparent seismic anisotropy parameters using the Backus average and ray theory, respectively. We find that, relative to Backus averaging, ray theory usually underestimates the Thomsen parameters [Formula: see text] and [Formula: see text], and overestimates [Formula: see text]. For an effective layered medium consisting of isotropic sedimentary rocks, the differences are significant. These differences decrease when shales with intrinsic seismic anisotropy are included. For the same sedimentary strata, the seismic wave should perceive stronger seismic anisotropy than the ultrasonic wave.


1983 ◽  
Vol 74 (1) ◽  
pp. 294-304 ◽  
Author(s):  
J. W. Dickey ◽  
D. A. Nixon ◽  
J. M. D’Archangelo

Author(s):  
J. R. OCKENDON ◽  
H. OCKENDON ◽  
B. D. SLEEMAN ◽  
R. H. TEW

This paper describes how asymptotic analysis can be used to gain new insights into the theory of cloaking of spherical and cylindrical targets within the context of acoustic waves in a class of linear elastic materials. In certain cases, these configurations allow solutions to be written down in terms of eigenfunction expansions from which high-frequency asymptotics can be extracted systematically. These asymptotics are compared with the predictions of ray theory and are used to describe the scattering that occurs when perfect cloaking models are regularised.


Sign in / Sign up

Export Citation Format

Share Document