Creatine Supplementation Does Not Influence the Ratio Between Intracellular Water and Skeletal Muscle Mass in Resistance-Trained Men

2020 ◽  
Vol 30 (6) ◽  
pp. 405-411
Author(s):  
Alex S. Ribeiro ◽  
Ademar Avelar ◽  
Witalo Kassiano ◽  
João Pedro Nunes ◽  
Brad J. Schoenfeld ◽  
...  

The authors aimed to compare the effects of creatine (Cr) supplementation combined with resistance training on skeletal muscle mass (SMM), total body water, intracellular water (ICW), and extracellular water (ECW) in resistance-trained men as well as to determine whether the SMM/ICW ratio changes in response to the use of this ergogenic aid. Twenty-seven resistance-trained men received either Cr (n = 14) or placebo (n = 13) over 8 weeks. During the same period, subjects performed two split resistance training routines four times per week. SMM was estimated from appendicular lean soft tissue assessed by dual-energy X-ray absorptiometry. Total body water, ICW, and ECW were determined by spectral bioelectrical impedance. Both groups showed improvements (p < .05) in SMM, total body water, and ICW, with greater values observed for the Cr group compared with placebo. ECW increased similarly in both groups (p < .05). The SMM/ICW ratio did not change in either group (p > .05), whereas the SMM/ECW ratio decreased only in the Cr group (p < .05). A positive correlation was observed (p < .05) between SMM and ICW changes (r = .71). The authors’ results suggest that the increase in muscle mass induced by Cr combined with resistance training occurs without alteration of the ratio of ICW to SMM in resistance-trained men.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1169-1169
Author(s):  
Jacob Gray ◽  
Tay Kennedy

Abstract Objectives Phase angle, derived from bioelectrical impedance analysis (BIA), is used to describe both cellular and overall health. Many of the variables measured using BIA vary based on the hydration status of the individual. The ratio between extracellular water/total body water is commonly measured in BIA, and can be used as a measure of individual hydration. This pilot study explores the relationship between individual hydration status and phase angle and other BIA measurements. Methods Male college students (n = 57) from Oklahoma State University-Stillwater were recruited through an email messaging campaign. The participants answered an online Qualtrics demographic survey; height (±0.1 cm), blood pressure, and weight were taken. The Seca Medical Body Composition Analyzer mBCA 514 was used to conduct the BIA. Variable mean, standard deviations, and frequencies were calculated using SPSS version 25. Pearson correlation analysis and regression analysis were conducted. Significance was set at &lt;.05. Results Participants characteristics included: age (m = 21.7 ± 1.3 years), 54% BMI &lt;25, 39% blood pressure &lt;120/80, and 63% white/7% Native American. Mean % body fat was 20.28 ± 8.76, and skeletal muscle was 32.223 kg ± 4.432 and visceral fat was 2.01 liters ± 2.11.Phase angle percentile ranged from 1% to 99% (m = 62.0% ± 31.4) and extracellular water/total body water ratio (ECW/TBW) ranged from 35.7 to 41.6 (m = 39.32 ± 1.35). Phase angle percentile was positively correlated with skeletal muscle mass (r = 0.503, P = 0.000) and negatively correlated with ECW/TBW (r = −0.659, P = 0.000), but not with other BIA variables. These two variables significantly predicted phase angle percentile (r2 = 0.817, P = 0.000). The standardized β was −0.762 (P = 0.000) for ECW/TBW and 0.627 (P = 0.000) for skeletal muscle mass. Conclusions The association of ECW/TBW on phase angle percentile suggest further investigation of the impact of water on this indicator of health is warranted. An investigation with a method of modulating ECW/TBW would be a logical next step in understanding this relationship. Funding Sources Funding was provided by the Lew Wentz Foundation, and the Nutritional Sciences Department at Oklahoma State University.


2009 ◽  
Vol 28 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Marja Tengvall ◽  
Lars Ellegård ◽  
Vibeke Malmros ◽  
Niklas Bosaeus ◽  
Lauren Lissner ◽  
...  

2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S294
Author(s):  
K Kojima ◽  
T Abe ◽  
C F. Kearns ◽  
T Aoba ◽  
T Matsumoto

2009 ◽  
Vol 21 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Beat Knechtle ◽  
Tristan Vinzent ◽  
Steve Kirby ◽  
Patrizia Knechtle ◽  
Thomas Rosemann

The Recovery Phase Following a Triple Iron TriathlonThe purpose of this case study was to investigate the recovery phase in a single athlete after a Triple Iron Triathlon involving 11.4 km swimming, 540 km cycling and 126.6 km running. Total body mass, body fat and skeletal muscle mass using the anthropometric method as well as total body water using bioelectrical impedance analysis were determined pre race, after the race and every 24 hours until complete recovery. Parameters of hydration status (urinary specific gravity, hematocrit and plasma sodium) and skeletal muscle damage (plasma urea) were measured at the same time. After finishing the race within 42 hours, total body mass was decreased and total body water was increased. Over the following 6 days, prior to returning to pre race values for plasma volume and total body water, body mass reached a peak value on day 3, plasma volume on day 2 and total body water on day 1. Clinically visible edemas of the feet persisted until day 4. Six days after the race, body mass was reduced by 2.1 kg, skeletal muscle mass by 0.6 kg and fat mass by 0.7 kg. An increase in both blood urea and urinary output post race between days 3 and 6 suggested an impairment of renal function immediately post race due to skeletal muscle damage and manifesting clinically observed edemas. For practical application, athletes, coaches and physicians should anticipate that performing such an ultra-endurance race can lead to considerable edemas of the lower limbs during the recovery phase.


2007 ◽  
Vol 137 (8) ◽  
pp. 1988-1991 ◽  
Author(s):  
ZiMian Wang ◽  
Stanley Heshka ◽  
Angelo Pietrobelli ◽  
Zhao Chen ◽  
Analiza M. Silva ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 421-428
Author(s):  
Tessa E. Morris‐Paterson ◽  
Stephen A. Stimpson ◽  
Ram R. Miller ◽  
Matthew E. Barton ◽  
Michael S. Leonard ◽  
...  

2002 ◽  
Vol 76 (2) ◽  
pp. 378-383 ◽  
Author(s):  
Jaehee Kim ◽  
ZiMian Wang ◽  
Steven B Heymsfield ◽  
Richard N Baumgartner ◽  
Dympna Gallagher

Sign in / Sign up

Export Citation Format

Share Document