Can Hyperoxic Preconditioning in Normobaric Hypoxia (3500 m) Improve All-Out Exercise Performance in Highly Skilled Skiers? A Randomized Crossover Study

2020 ◽  
Vol 15 (3) ◽  
pp. 346-353
Author(s):  
David Morawetz ◽  
Tobias Dünnwald ◽  
Martin Faulhaber ◽  
Hannes Gatterer ◽  
Lukas Höllrigl ◽  
...  

Background: The altering effects of hypoxia on aerobic/anaerobic performance are well documented and form the basis of this study. Application of hyperoxic gases (inspiratory fraction of oxygen [FiO2] > 0.2095) prior to competition or training (hyperoxic preconditioning) can compensate for the negative influence of acute hypoxia. Purpose: To investigate whether oxygen supplementation immediately prior to exercise (FiO2 = 1.0) improves all-out exercise performance in normobaric hypoxia (3500 m) in highly skilled skiers. Methods: In this single-blind, randomized, crossover study, 17 subjects performed a 60-second constant-load, all-out test in a normobaric hypoxic chamber. After a short period of adaptation to hypoxia (60 min), they received either pure oxygen or chamber air for 5 minutes prior to the all-out test (hyperoxic preconditioning vs nonhyperoxic preconditioning). Capillary blood was collected 3 times, and muscle oxygenation was assessed with near-infrared spectroscopy. Results: Absolute and relative peak power (P = .073 vs P = .103) as well as mean power (P = .330 vs P = .569) did not significantly differ after the hyperoxic preconditioning phase. PaO2 increased from 51.3 (3) to 451.9 (89.0) mm Hg, and SaO2 increased from 88.2% (1.7%) to 100% (0.2%) and dropped to 83.8% (4.2%) after the all-out test. Deoxygenation (P = .700) and reoxygenation rates (P = .185) did not significantly differ for both preconditioned settings. Conclusions: Therefore, the authors conclude that hyperoxic preconditioning did not enhance 60-second all-out exercise performance in acute hypoxia (3500 m).

2019 ◽  
Vol 14 (7) ◽  
pp. 934-940
Author(s):  
David Morawetz ◽  
Tobias Dünnwald ◽  
Martin Faulhaber ◽  
Hannes Gatterer ◽  
Wolfgang Schobersberger

It is well known that acute hypoxia has negative effects on balance performance. An attempt to compensate for the influence of hypoxia on competition performance was made by the application of hyperoxic gases (inspiratory fraction of oxygen > 0.2095) prior to exercise. Purpose: To investigate whether hyperoxic preconditioning (pure-oxygen supplementation prior to exercise) improves balance ability and postural stability during normobaric hypoxia (3500 m) in highly skilled skiers. Methods: In this single-blind randomized, crossover study, 19 subjects performed a 60-s balance test (MFT S3-Check) in a normobaric hypoxic chamber. After a short period of adaptation to hypoxia (60 min), they received either pure oxygen or chamber air for 5 min prior to a balance test (hyperoxic preconditioning vs nonhyperoxic preconditioning). Capillary blood was collected 3 times. Results: Balance performance, indexed by sensory (P = .097), stability (P = .937), and symmetry (P = .202) scores, was not significantly different after the hyperoxic preconditioning phase. Balance performance decreased over time (no group difference). After hyperoxic preconditioning, arterial partial pressure of oxygen increased from 52.7 (4.5) mm Hg to 212.5 (75.8) mm Hg, and oxygen saturation of hemoglobin increased from 85.8% (3.5%) to 98.9% (0.7%) and remained significantly elevated to 90.1% (2.0%) after the balance test. Conclusion: A hyperoxic preconditioning phase does not affect balance performance under hypoxic environmental conditions. A performance-enhancing effect, at least in terms of coordinative functions, was not supported by this study.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 755-P
Author(s):  
HANA KAHLEOVA ◽  
ANDREA TURA ◽  
MARTA KLEMENTOVA ◽  
LENKA BELINOVA ◽  
MARTIN HALUZIK ◽  
...  

Author(s):  
A.A. Chernykh ◽  
N.N. Potolitsyna ◽  
E.A. Burykh ◽  
E.R. Boyko

The aim of the study was to assess the effect of acute normobaric hypoxia on free plasma amino acids (AA) in volunteers after overnight fasting and in the fed state. Materials and Methods. Group 1 (n=13, aged 22–32) participated in the study in the morning after overnight fasting. Group 2 (n=9, aged 22–32) took part in the study after a light fat-free breakfast. Acute normobaric hypoxia was achieved by breathing a hypoxic gas mixture (9 % O2 and 91 % N2) through a mask. According to the experimental protocol, blood sampling from the cubital vein was performed for analysis. Free plasma amino acids were analyzed using the Aracus amino acid analyzer. Results. Prior to the hypoxia onset, at the 5th and 20th minutes of hypoxia, no statistically significant differences in free AA levels were observed in the groups (p>0.05). At the 10th minute of hypoxia the levels of four AAs (serine, threonine, glutamine, and histidine) were significantly higher in Group 1 than in Group 2 (p<0.05). This was probably due to differences in functioning of several key “harmonizing” AA transporters (ASCT1 (SLC1A4), ASCT2 (SLC1A5) and LAT1 (SC7A5)), for which the AAs were metabolic substrates. It can be assumed, that such changes were caused by currently unclear mechanisms of fast regulation of AA transporter activity, associated with nutritional status. Conclusion. We believe that our findings may be important for providing better adaptation to hypoxia, and for more efficient correction of hypoxic negative effects. Keywords: acute normobaric hypoxia, free plasma amino acids, human. Цель исследования: изучить воздействие острой нормобарической гипоксии на метаболизм свободных аминокислот (АК) плазмы крови у добровольцев, участвовавших в исследовании натощак и после лёгкого завтрака. Материалы и методы. Первая группа добровольцев (22–32 года, n=13) участвовала в исследовании утром натощак, вторая группа (22–32 года, n=9) – через 2–3 ч после лёгкого безжирового завтрака. Гипоксия создавалась путём подачи через маску дыхательной смеси, содержащей 9 % О2 и 91 % N2. В соответствии с протоколом проводился периодический забор крови из локтевой вены для анализа. Оценка уровней свободных АК плазмы крови производилась с помощью аминокислотного анализатора Aracus. Результаты. До начала гипоксии, на 5-й и 20-й мин гипоксии уровни свободных АК в первой и второй группах значимо не различались (p>0,05). На 10-й мин гипоксии между первой и второй группами наблюдались статистически значимые различия уровней четырёх АК: глутамина, серина, треонина и гистидина (p<0,05). Это, вероятно, было обусловлено изменениями в работе «гармонизирующих» мембранных транспортёров (ASCT1 (SLC1A4), ASCT2 (SLC1A5) и LAT1 (SC7A5)), для которых эти АК являются обменными субстратами. Можно предположить, что данные изменения были опосредованы пока неясными механизмами быстрой регуляции активности этих транспортёров, зависящими от питания. Выводы. Мы полагаем, что полученные результаты могут иметь значение для обеспечения адаптации организма человека к острой гипоксии и эффективной коррекции последствий гипоксического воздействия. Ключевые слова: острая нормобарическая гипоксия, свободные аминокислоты плазмы крови, человек.


Sign in / Sign up

Export Citation Format

Share Document