Identifying Athlete Body Fluid Changes During a Competitive Season With Bioelectrical Impedance Vector Analysis

2020 ◽  
Vol 15 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Francesco Campa ◽  
Catarina N. Matias ◽  
Elisabetta Marini ◽  
Steven B. Heymsfield ◽  
Stefania Toselli ◽  
...  

Purpose: To analyze the association between body fluid changes evaluated by bioelectrical impedance vector analysis and dilution techniques over a competitive season in athletes. Methods: A total of 58 athletes of both sexes (men: age 18.7 [4.0] y and women: age 19.2 [6.0] y) engaging in different sports were evaluated at the beginning (pre) and 6 months after (post) the competitive season. Deuterium dilution and bromide dilution were used as the criterion methods to assess total body water (TBW) and extracellular water (ECW), respectively; intracellular water (ICW) was calculated as TBW–ECW. Bioelectrical resistance and reactance were obtained with a phase-sensitive 50-kHz bioelectrical impedance analysis device; bioelectrical impedance vector analysis was applied. Dual-energy X-ray absorptiometry was used to assess fat mass and fat-free mass. The athletes were empirically classified considering TBW change (pre–post, increase or decrease) according to sex. Results: Significant mean vector displacements in the postgroups were observed in both sexes. Specifically, reductions in vector length (Z/H) were associated with increases in TBW and ICW (r = −.718, P < .01; r = −.630, P < .01, respectively) and decreases in ECW:ICW ratio (r = .344, P < .05), even after adjusting for age, height, and sex. Phase-angle variations were positively associated with TBW and ICW (r = .458, P < .01; r = .564, P < .01, respectively) and negatively associated with ECW:ICW (r = −.436, P < .01). Phase angle significantly increased in all the postgroups except in women in whom TBW decreased. Conclusions: The results suggest that bioelectrical impedance vector analysis is a suitable method to obtain a qualitative indication of body fluid changes during a competitive season in athletes.

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1175
Author(s):  
Francesco Campa ◽  
Tindaro Bongiovanni ◽  
Athos Trecroci ◽  
Alessio Rossi ◽  
Gianpiero Greco ◽  
...  

The present study compared changes in body composition during the COVID-19-associated lockdown with the same period of the following season in elite soccer players. Fifteen elite male soccer players (30.5 ± 3.6 years.) underwent a bioelectrical impedance analysis (BIA) before (end of February) and after (end of May) the lockdown, which occurred during the 2019/2020 season, and at the same period during the following competitive season in 2020/2021, when restrictions were lifted. Fat and muscle mass were estimated using predictive equations, while phase angle (PhA) and bioelectrical impedance vector analysis (BIVA) patterns were directly measured. After lockdown, fat mass remained unchanged (p > 0.05), while muscle mass (95%CI = −1.12/−0.64; ES = −2.04) and PhA (95%CI = 0.51/−0.24, ES = −1.56) decreased. A rightward displacement of the BIVA vector was also found (p < 0.001, ES = 1.50). After the same period during the regular season, FM% and muscle mass did not change (p > 0.05), while the PhA increased (95%CI = 0.01/0.22; ES = 0.63). A leftward vector displacement (p < 0.001, ES = 1.05) was also observed. The changes in muscle mass correlated with changes in PhA (“lockdown” season 2019/2020: ß = −1.128, p = 0.011; “regular” season 2020/21: ß = 1.963, p = 0.011). In conclusion, coaches and strength conditioners should monitor muscle mass in soccer players during detraining periods as this parameter appears to be mainly affected by changes in training plans.


Author(s):  
Leslie Verdeja-Vendrell ◽  
Dulce Gonzalez-Islas ◽  
Arturo Orea-Tejeda ◽  
Ana Grecia Navarrete-Penaloza ◽  
Rocio Sanchez-Santillan ◽  
...  

2020 ◽  
Vol 39 (2) ◽  
pp. 447-454 ◽  
Author(s):  
Elisabetta Marini ◽  
Francesco Campa ◽  
Roberto Buffa ◽  
Silvia Stagi ◽  
Catarina N. Matias ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1929
Author(s):  
Laura Hoen ◽  
Daniel Pfeffer ◽  
Rico Zapf ◽  
Andrea Raabe ◽  
Janosch Hildebrand ◽  
...  

Due to multifactorial reasons, such as decreased thirst and decreased total body water, elderly patients are vulnerable to dehydration. Mild cognitive impairment (MCI) or dementia increase the risk of dehydration and, in turn, dehydration decreases cognitive performance. The study aims to identify and assess differences in hydration status, taking into account patients’ drug treatment and diseases, using bioelectrical impedance vector analysis (BIVA), thereby revealing unfavorable aspects of prognosis. 447 geriatric patients (241 women, 206 men) including information on medication and bioelectrical impedance analysis (BIA) were investigated, which allowed studying the association between 40 drugs and the hydration status. First, patients were divided into disease groups. Renal disease and diuretic treatment were significantly different in both sexes, whereas cardiovascular patients differed exclusively for females. Next, drug enrichment was examined in either hyperhydrated or dehydrated patients. Simvastatin, candesartan, bisoprolol, amlodipine, olmesartan, furosemide, torasemide, allopurinol, mirtazapine, pantoprazole, cholecalciferol, and resveratrol showed enrichment depending on hydration status. This study demonstrated that patients can be differentiated and stratified by BIVA, taking into account medication and disease associated with hydration status. Although patients diagnosed with MCI and therefore treated with resveratrol, BIVA still showed evaluated dehydration. This is unfavorable in terms of prognosis and requires special attention.


2019 ◽  
Vol 44 (6) ◽  
pp. 619-626 ◽  
Author(s):  
Björn Jensen ◽  
Takashi Moritoyo ◽  
Martha Kaufer-Horwitz ◽  
Sven Peine ◽  
Kristina Norman ◽  
...  

According to the World Health Organization Expert Consultation, current body mass index (BMI) cut-offs should be retained as an international classification. However, there are ethnic differences in BMI-associated health risks that may be caused by differences in body fat or skeletal muscle mass and these may affect the interpretation of phase angle and bioelectrical impedance vector analysis (BIVA). Therefore, the aim of this study was to compare body composition measured by bioelectrical impedance analysis among 1048 German, 1026 Mexican, and 995 Japanese adults encompassing a wide range of ages and BMIs (18–78 years; BMI, 13.9–44.3 kg/m2). Regression analyses between body composition parameters and BMI were used to predict ethnic-specific reference values at the standard BMI cut-offs of 18.5, 25, and 30 kg/m2. German men and women had a higher fat-free mass per fat mass compared with Mexicans. Normal-weight Japanese were similar to Mexicans but approached the German phenotype with increasing BMI. The skeletal muscle index (SMI, kg/m2) was highest in Germans, whereas in BIVA, the Mexican group had the longest vector, and the Japanese group had the lowest phase angle and the highest extracellular/total body water ratio. Ethnic differences in regional partitioning of fat and muscle mass at the trunk and the extremities contribute to differences in BIVA and phase angle. In conclusion, not only the relationship between BMI and adiposity is ethnic specific; in addition, fat distribution, SMI, and muscle mass distribution vary at the same BMI. These results emphasize the need for ethnic-specific normal values in the diagnosis of obesity and sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document