Comparison of Twitch-Contractile Properties of Plantar-Flexor Muscles in Young and 52- to 63-Year-Old Men

2002 ◽  
Vol 10 (2) ◽  
pp. 160-168 ◽  
Author(s):  
Mati Pääsuke ◽  
Jaan Ereline ◽  
Helena Gapeyeva ◽  
Heigo Maamägi

This study compared maximal voluntary-contraction (MVC) force and twitch-contractile properties of the plantar-flexor muscles in resting and postactivation potentiation slates of 2 groups of men matched for similar levels of physical activity: young (19- to 22-year-olds. n = 13) and 52–63 years old (n = 12). MVC force, twitch peak force (PT), maximal rates of force development and relaxation, and postactivation potentiation were higher (p < .05) in young than in 52- to 63-year-old men. In young men. potentiated-twitch PT was 23.3% higher (p < .01) than resting twitch. Resting- and potentialed-twitch-contraction times were 16.7% and 18.3% shorter, respectively (p < .001), in young than in 52- to 63-year-old men. These Findings suggest that late middle age is characterized by reduced capacity for evoked twitch-force generation and potentiation and slowed speed of contraction of the plantar-flexor muscles.

2003 ◽  
Vol 15 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Mati Pääsuke ◽  
Jaan Ereline ◽  
Helena Gapeyeva ◽  
Madli Toots ◽  
Laivi Toots

Twitch contractile properties of plantar flexor muscles were compared in 9- to 10-year-old girls and boys. No significant gender differences (p > .05) in isometric maximal voluntary contraction force and twitch peak force, contraction and relaxation times, and twitch maximal rate of force development in either resting or potentiated state have been observed. However, boys had significantly greater (p < .05) twitch postactivation potentiation and potentiated twitch maximal rate of relaxation than girls. These results indicated that twitch force-potentiation capacity of skeletal muscles prior to puberty is more highly developed in boys than girls.


2002 ◽  
Vol 92 (4) ◽  
pp. 1383-1392 ◽  
Author(s):  
Nicola A. Maffiuletti ◽  
Manuela Pensini ◽  
Alain Martin

Neuromuscular adaptations of the plantar flexor muscles were assessed before and subsequent to short-term electromyostimulation (EMS) training. Eight subjects underwent 16 sessions of isometric EMS training over 4 wk. Surface electromyographic (EMG) activity and torque obtained under maximal voluntary and electrically evoked contractions were analyzed to distinguish neural adaptations from contractile changes. After training, plantar flexor voluntary torque significantly increased under isometric conditions at the training angle (+8.1%, P< 0.05) and at the two eccentric velocities considered (+10.8 and +13.1%, P < 0.05). Torque gains were accompanied by higher normalized soleus EMG activity and, in the case of eccentric contractions, also by higher gastrocnemii EMG ( P < 0.05). There was an 11.9% significant increase in both plantar flexor maximal voluntary activation ( P < 0.01) and postactivation potentiation ( P < 0.05), whereas contractile properties did not change after training. In the absence of a change in the control group, it was concluded that an increase in neural activation likely mediates the voluntary torque gains observed after short-term EMS training.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
E. F. Hodson-Tole ◽  
A. K. M. Lai

Abstract Skeletal muscle thickness is a valuable indicator of several aspects of a muscle’s functional capabilities. We used computational analysis of ultrasound images, recorded from 10 humans walking and running at a range of speeds (0.7–5.0 m s−1), to quantify interactions in thickness change between three ankle plantar flexor muscles (soleus, medial and lateral gastrocnemius) and quantify thickness changes at multiple muscle sites within each image. Statistical analysis of thickness change as a function of stride cycle (1d statistical parametric mapping) revealed significant differences between soleus and both gastrocnemii across the whole stride cycle as they bulged within the shared anatomical space. Within each muscle, changes in thickness differed between measurement sites but not locomotor condition. For some of the stride, thickness measures taken from the distal-mid image region represented the mean muscle thickness, which may therefore be a reliable region for these measures. Assumptions that muscle thickness is constant during a task, often made in musculoskeletal models, do not hold for the muscles and locomotor conditions studied here and researchers should not assume that a single thickness measure, from one point of the stride cycle or a static image, represents muscle thickness during dynamic movements.


2019 ◽  
Vol 119 (5) ◽  
pp. 1127-1136 ◽  
Author(s):  
Rasmus Feld Frisk ◽  
Jakob Lorentzen ◽  
Lee Barber ◽  
Jens Bo Nielsen

2020 ◽  
Vol 129 (5) ◽  
pp. 1011-1023 ◽  
Author(s):  
Ricardo J. Andrade ◽  
Sandro R. Freitas ◽  
François Hug ◽  
Guillaume Le Sant ◽  
Lilian Lacourpaille ◽  
...  

This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.


Sign in / Sign up

Export Citation Format

Share Document