Oxygen Uptake Kinetics in Children and Adolescents: A Review

2009 ◽  
Vol 21 (2) ◽  
pp. 130-147 ◽  
Author(s):  
Neil Armstrong ◽  
Alan R. Barker

The pulmonary oxygen uptake (pVO2) kinetic response at the onset of exercise provides a noninvasive window into the metabolic activity of the muscle and a valuable means of increasing our understanding of developmental muscle metabolism. However, to date only limited research has been devoted to investigating the pVO2 kinetic response during exercise in children and adolescents. From the rigorous studies that have been conducted, both age- and sex-related differences have been identified. Specifically, children display a faster exponential rise in the phase II pVO2 kinetics, which are purported to reflect the rise in muscle O2 consumption, during moderate, heavy and very heavy intensity exercise compared with adults. Furthermore, for heavy and very heavy exercise, the O2 cost of exercise is higher for the exponential phase and the magnitude of the pVO2 slow component is smaller in young children. Sex-related differences have been identified during heavy, but not moderate exercise, with prepubertal boys displaying a faster exponential phase II pVO2 kinetic response and a smaller pVO2 slow component compared with prepubertal girls. The mechanisms underlying these differences are currently poorly understood, and form the basis for future research in this area. However, it is hypothesized that an age-related modulation of the muscle phosphate feedback controllers to signal an increased rate of oxidative phosphorylation and/or altered muscle fiber type recruitment strategies have the potential to play an important role. Overall, the data support the view that at the onset of exercise children have an enhanced potential for oxidative metabolism in the myocyte compared with adults.

Author(s):  
Alan R Barker ◽  
Neil Armstrong

The pulmonary oxygen uptake (pV̇O2) kinetic response to exercise provides valuable non-invasive insight into the control of oxidative phosphorylation and determinants of exercise tolerance in children and adolescents. Few methodologically robust studies have investigated pV̇O2 kinetics in children and adolescents, but age- and sex-related differences have been identified. There is a clear age-related slowing of phase II pV̇O2 kinetics during heavy and very heavy exercise, with a trend showing during moderate intensity exercise. During heavy and very heavy exercise the oxygen cost is higher for phase II and the pV̇O2 component is truncated in children. Sex-related differences occur during heavy, but not moderate, intensity exercise, with boys having faster phase II pV̇O2 kinetics and a smaller pV̇O2 slow component compared to girls. The mechanisms underlying these differences are likely related to changes in phosphate feedback controllers of oxidative phosphorylation, muscle oxygen delivery, and/or muscle fibre recruitment strategies.


2000 ◽  
Vol 89 (4) ◽  
pp. 1387-1396 ◽  
Author(s):  
Mark Burnley ◽  
Andrew M. Jones ◽  
Helen Carter ◽  
Jonathan H. Doust

We tested the hypothesis that heavy-exercise phase II oxygen uptake (V˙o 2) kinetics could be speeded by prior heavy exercise. Ten subjects performed four protocols involving 6-min exercise bouts on a cycle ergometer separated by 6 min of recovery: 1) moderate followed by moderate exercise; 2) moderate followed by heavy exercise; 3) heavy followed by moderate exercise; and 4) heavy followed by heavy exercise. The V˙o 2 responses were modeled using two (moderate exercise) or three (heavy exercise) independent exponential terms. Neither moderate- nor heavy-intensity exercise had an effect on the V˙o 2 kinetic response to subsequent moderate exercise. Although heavy-intensity exercise significantly reduced the mean response time in the second heavy exercise bout (from 65.2 ± 4.1 to 47.0 ± 3.1 s; P < 0.05), it had no significant effect on either the amplitude or the time constant (from 23.9 ± 1.9 to 25.3 ± 2.9 s) of theV˙o 2 response in phase II. Instead, this “speeding” was due to a significant reduction in the amplitude of the V˙o 2 slow component. These results suggest phase II V˙o 2 kinetics are not speeded by prior heavy exercise.


2014 ◽  
Vol 39 (3) ◽  
pp. 308-317 ◽  
Author(s):  
Alan R. Barker ◽  
Emily Trebilcock ◽  
Brynmor Breese ◽  
Andrew M. Jones ◽  
Neil Armstrong

This study used priming exercise in young boys to investigate (i) how muscle oxygen delivery and oxygen utilization, and muscle activity modulate oxygen uptake kinetics during exercise; and (ii) whether the accelerated oxygen uptake kinetics following priming exercise can improve exercise tolerance. Seven boys that were aged 11.3 ± 1.6 years completed either a single bout (bout 1) or repeated bouts with 6 min of recovery (bout 2) of very heavy-intensity cycling exercise. During the tests oxygen uptake, muscle oxygenation, muscle electrical activity and exercise tolerance were measured. Priming exercise most likely shortened the oxygen uptake mean response time (change, ±90% confidence limits; –8.0 s, ±3.0), possibly increased the phase II oxygen uptake amplitude (0.11 L·min−1, ±0.09) and very likely reduced the oxygen uptake slow component amplitude (–0.08 L·min−1, ±0.07). Priming resulted in a likely reduction in integrated electromyography (–24% baseline, ±21% and –25% baseline, ±19) and a very likely reduction in Δ deoxyhaemoglobin/Δoxygen uptake (–0.16, ±0.11 and –0.09, ±0.05) over the phase II and slow component portions of the oxygen uptake response, respectively. A correlation was present between the change in tissue oxygenation index during bout 2 and the change in the phase II (r = –0.72, likely negative) and slow component (r = 0.72, likely positive) oxygen uptake amplitudes following priming exercise, but not for muscle activity. Exercise tolerance was likely reduced (change –177 s, ±180) following priming exercise. The altered phase II and slow component oxygen uptake amplitudes in boys following priming exercise are linked to an improved localised matching of muscle oxygen delivery to oxygen uptake and not muscle electrical activity. Despite more rapid oxygen uptake kinetics following priming exercise, exercise tolerance was not enhanced.


Author(s):  
Liping Qi ◽  
Shuo Guan ◽  
Dong-Dong Zhou ◽  
Feng-Shan Gao ◽  
Li-Qing Liu

The purpose of this study was to investigate the influence of muscle fiber type on the slow component of oxygen uptake (VO2) kinetics and electromyographic activity. Twelve sprinters and ten endurance runners participated in the study. They performed two separate treadmill running tests, the first test being conducted to determine the ventilatory threshold and maximal oxygen uptake. The second test consisted of a 6 min running bout at severe exercise intensity. A two-component exponential model was used to fit the VO2 response. Surface electromyographic signals were collected from Vastus lateralis, and processed by wavelet analysis. Sprinters and endurance runners, with their distinct anaerobic and aerobic fitness, showed a substantial difference in VO2 slow component during severe exercise. The sprinters showed a significantly higher VO2 slow component amplitude (A2: 381.0 ± 96.3 mL/min) and a significantly earlier slow component onset (TD2: 118.1 ± 16.1 s) than the endurance runners (A2: 142.2 ± 58.4 mL/min, TD2: 145.9 ± 19.9 s). The electromyographic mean power frequency of the tested muscles increased significantly during the slow component phase. There is a significant correlation between VO2 slow component and electromyographic mean power frequency for endurance runners ( r = 0.50, p = 0.003). The combined use of VO2 kinetics modeling and electromyographic measurement provides evidence of the influence of muscle fiber type on slow component of oxygen uptake kinetics during severe intensity exercise.


2007 ◽  
Vol 32 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Nicolas J.A. Berger ◽  
Andrew M. Jones

Pulmonary O2 uptake kinetics during “step” exercise have not been characterized in young, sprint-trained (SPT), athletes. Therefore, the objective of this study was to test the hypotheses that SPT athletes would have (i) slower phase II kinetics and (ii) a greater oxygen uptake “slow component” when compared with endurance-trained (ENT) athletes. Eight sub-elite SPT athletes (mean ( ± SD) age = 25 (±7) y; mass = 80.3 (±7.3) kg) and 8 sub-elite ENT athletes (age= 28 (±4) y; mass = 73.2 (±5.1) kg) completed a ramp incremental cycle ergometer test, a Wingate 30 s anaerobic sprint test, and repeat “step” transitions in work rate from 20 W to moderate- and severe-intensity cycle exercise, during which pulmonary oxygen uptake was measured breath by breath. The phase II oxygen uptake kinetics were significantly slower in the SPT athletes both for moderate (time constant, τ; SPT 32 (±4) s vs. ENT 17 (±3) s; p < 0.01) and severe (SPT 32 (±12) s vs. ENT 20 (±6) s; p < 0.05) exercise. The amplitude of the slow component (derived by exponential modelling) was not significantly different between the groups (SPT 0.55 (±0.12) L·min–1 vs. ENT 0.50 (±0.22) L·min–1), but the increase in oxygen uptake between 3 and 6 min of severe exercise was greater in the SPT athletes (SPT 0.37 (±0.08) L·min–1 vs. ENT 0.20 (±0.09) L·min–1; p < 0.01). The phase II τ was significantly correlated with indices of aerobic exercise performance (e.g., peak oxygen uptake (moderate-intensity r = –0.88, p < 0.01; severe intensity r = –0.62; p < 0.05), whereas the relative amplitude of the oxygen uptake slow component was significantly correlated with indices of anaerobic exercise performance (e.g., Wingate peak power output; r = 0.77; p < 0.01). Thus, it could be concluded that sub-elite SPT athletes have slower phase II oxygen uptake kinetics and a larger oxygen uptake slow component compared with sub-elite ENT athletes. It appears that indices of aerobic and anaerobic exercise performance differentially influence the fundamental and slow components of the oxygen uptake kinetics.


2003 ◽  
Vol 21 (1) ◽  
pp. 39-47 ◽  
Author(s):  
ALFREDO SANTALLA ◽  
MARGARITA PÉREZ ◽  
MANUEL MONTILLA ◽  
LÁZARO VICENTE ◽  
RICHARD DAVISON ◽  
...  

CHEST Journal ◽  
2005 ◽  
Vol 128 (3) ◽  
pp. 1782-1789 ◽  
Author(s):  
Corey R. Tomczak ◽  
Wladyslaw Wojcik ◽  
Edward F.G. Busse ◽  
Robert G. Haennel

2015 ◽  
Vol 40 (9) ◽  
pp. 918-923 ◽  
Author(s):  
Kelly de Jesus ◽  
Ana Sousa ◽  
Karla de Jesus ◽  
João Ribeiro ◽  
Leandro Machado ◽  
...  

Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s−1 increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min−1) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.


Sign in / Sign up

Export Citation Format

Share Document