Nucleus Accumbens Dopamine and the Regulation of Effort in Food-Seeking Behavior: Implications for Studies of Natural Motivation, Psychiatry, and Drug Abuse

2003 ◽  
Vol 305 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. D. Salamone ◽  
M. Correa ◽  
S. Mingote ◽  
S. M. Weber
2016 ◽  
Vol 94 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Reza Arezoomandan ◽  
Abbas Haghparast

Relapse to drug use is one of the most difficult clinical problems in treating addiction. Glial activation has been linked with the drug abuse, and the glia modulators such as minocycline can modulate the drug abuse effects. The aim of the present study was to determine whether minocycline could attenuate the maintenance and reinstatement of morphine. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) for 3 days. Following the acquisition of the CPP, the rats were given daily bilateral intra-NAc injections of either minocycline (1, 5, and 10 μg/0.5 μL) or saline (0.5 μL). The animals were tested for conditioning score 60 min after each injection. To induce the reinstatement, a priming dose of morphine (1 mg/kg) was injected 1 day after the final extinction day. The morphine-induced CPP lasted for 7 days after cessation of morphine treatment. Our data revealed that a priming dose of morphine could reinstate the extinguished morphine-induced CPP. Daily intra-accumbal injection of minocycline during the extinction period blocked the maintenance of morphine CPP and also attenuated the priming-induced reinstatement. Our findings indicated that minocycline could facilitate the extinction and attenuate the reinstatement of morphine. These results provided new evidence that minocycline might be considered as a promising therapeutic agent for the treatment of several symptoms associated with morphine abuse.


2014 ◽  
Vol 40 (5) ◽  
pp. 1163-1171 ◽  
Author(s):  
Karen L Smith ◽  
Rahul R Rao ◽  
Clara Velázquez-Sánchez ◽  
Marta Valenza ◽  
Chiara Giuliano ◽  
...  

2021 ◽  
Vol 09 ◽  
Author(s):  
Kenneth Blum ◽  
Mark S Gold ◽  
Jean L. Cadet ◽  
David Baron ◽  
Abdalla Bowirrat ◽  
...  

Background: Repeated cocaine administration changes histone acetylation and methylation on Lys residues and Deoxyribonucleic acid (DNA) within the nucleus accumbens (NAc). Recently Nestler’s group explored histone Arg (R) methylation in reward processing models. Damez-Werno et al. (2016) reported that during investigator and selfadministration experiments, the histone mark protein-R-methyltransferase-6 (PRMT6) and asymmetric dimethylation of R2 on histone H3 (H3R2me2a) decreased in the rodent and cocaine-dependent human NAc. Overexpression of PRMT6 in D2-MSNs in all NAc neurons increased cocaine seeking, whereas PRMT6 overexpression in D1-MSNs protects against cocaine-seeking. Hypothesis: Hypothesizing that dopaminylation (H3R2me2a binding) occurs in psychostimulant use disorder (PSU), and the binding inhibitor Srcin1, like the major DRD2 A2 allelic polymorphism, protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. Discussion: Numerous publications confirmed the association between the DRD2 Taq A1 allele (30-40 lower D2 receptor numbers) and severe cocaine dependence. Lepack et al. (2020) found that acute cocaine increases dopamine in NAc synapses, results in histone H3 glutamine 5 dopaminylation (H3Q5dop), and consequent inhibition of D2 expression. The inhibition increases with chronic cocaine use and accompanies cocaine withdrawal. They also found that the Src kinase sig-naling inhibitor 1 (Srcin1 or p140CAP) during cocaine withdrawal reduced H3R2me2a binding. Consequently, this inhibited dopaminylation induced a “homeostatic brake.” Conclusion: The decrease in Src signaling in NAc D2-MSNs, like the DRD2 Taq A2 allele, a well-known genetic mechanism protective against SUD normalized nucleus accumbens (NAc) dopamine expression and decreased cocaine reward and motivation to self-administer cocaine. The Srcin1 may be an important therapeutic target.


Author(s):  
Zhanglei Dong ◽  
Bingwu Huang ◽  
Chenchen Jiang ◽  
Jiangfan Chen ◽  
Han Lin ◽  
...  

AbstractPropofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5–10.0 ng/site), MSX-3 (A2AR antagonist, 5.0–20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75–3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75–3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0–20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.


2022 ◽  
Author(s):  
Bridget A Matikainen-Ankney ◽  
Alex A Legaria ◽  
Yvan M Vachez ◽  
Caitlin A Murphy ◽  
Yiyan A Pan ◽  
...  

Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. In addition to homeostatic feeding mechanisms, there is growing recognition of the involvement of food reward and motivation in the development of obesity. However, it remains unclear how brain circuits that control food reward and motivation are altered in obese animals. Here, we tested the hypothesis that signaling through pro-motivational circuits in the core of the nucleus accumbens (NAc) is enhanced in the obese state, leading to invigoration of food seeking. Using a novel behavioral assay that quantifies physical work during food seeking, we confirmed that obese mice work harder than lean mice to obtain food, consistent with an increase in the relative reinforcing value of food in the obese state. To explain this behavioral finding, we recorded neural activity in the NAc core with both in vivo electrophysiology and cell-type specific calcium fiber photometry. Here we observed greater activation of D1-receptor expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. With ex vivo slice physiology we identified both pre- and post-synaptic mechanisms that contribute to this enhancement in NAc D1SPN activity in obese mice. Finally, blocking synaptic transmission from D1SPNs decreased physical work during food seeking and attenuated high-fat diet-induced weight gain. These experiments demonstrate that obesity is associated with a selective increase in the activity of D1SPNs during food seeking, which enhances the vigor of food seeking. This work also establishes the necessity of D1SPNs in the development of diet-induced obesity, identifying a novel potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document