scholarly journals Specific Lowering of ADMA by Pharmacological DDAH Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury

2020 ◽  
pp. JPET-AR-2020-000212
Author(s):  
Young Lee ◽  
Purvi Mehrotra ◽  
David Basile ◽  
MD Mahbub Ullah ◽  
Arshnoor Singh ◽  
...  
2018 ◽  
Vol 315 (1) ◽  
pp. H150-H158 ◽  
Author(s):  
Marie Hauerslev ◽  
Sivagowry Rasalingam Mørk ◽  
Kasper Pryds ◽  
Hussain Contractor ◽  
Jan Hansen ◽  
...  

Remote ischemic conditioning (RIC) protects against sustained myocardial ischemia. Because of overlapping mechanisms, this protection may be altered by glyceryl trinitrate (GTN), which is commonly used in the treatment of patients with chronic ischemic heart disease. We investigated whether long-term GTN treatment modifies the protection by RIC in the rat myocardium and human endothelium. We studied infarct size (IS) in rat hearts subjected to global ischemia-reperfusion (I/R) in vitro and endothelial function in healthy volunteers subjected to I/R of the upper arm. In addition to allocated treatment, rats were coadministered with reactive oxygen species (ROS) or nitric oxide (NO) scavengers. Rats and humans were randomized to 1) control, 2) RIC, 3) GTN, and 4) GTN + RIC. In protocols 3 and 4, rats and humans underwent long-term GTN treatment for 7 consecutive days, applied subcutaneously or 2 h daily transdermally. In rats, RIC and long-term GTN treatment reduced mean IS (18 ± 12%, P = 0.007 and 15 ± 5%, P = 0.002) compared with control (35 ± 13%). RIC and long-term GTN treatment in combination did not reduce IS (29 ± 12%, P = 0.55 vs. control). ROS and NO scavengers both attenuated IS reduction by RIC and long-term GTN treatment. In humans, I/R reduced endothelial function ( P = 0.01 vs. baseline). Separately, RIC and long-term GTN prevented the reduction in endothelial function caused by I/R; given in combination, prevention was lost. RIC and long-term GTN treatment both protect against rat myocardial and human endothelial I/R injury through ROS and NO-dependent mechanisms. However, when given in combination, RIC and long-term GTN treatment fail to confer protection. NEW & NOTEWORTHY Remote ischemic conditioning (RIC) and long-term glyceryl trinitrate (GTN) treatment protect against ischemia-reperfusion injury in both human endothelium and rat myocardium. However, combined application of RIC and long-term GTN treatment abolishes the individual protective effects of RIC and GTN treatment on ischemia-reperfusion injury, suggesting an interaction of clinical importance.


2020 ◽  
Vol 21 (15) ◽  
pp. 5336
Author(s):  
Irina A. Mandel ◽  
Yuri K. Podoksenov ◽  
Irina V. Suhodolo ◽  
Darya A. An ◽  
Sergey L. Mikheev ◽  
...  

The aim of the experiment was to evaluate the effect of preconditioning based on changes in inspiratory oxygen fraction on endothelial function in the model of ischemia-reperfusion injury of the myocardium in the condition of cardiopulmonary bypass. The prospective randomized study included 32 rabbits divided into four groups: hypoxic preconditioning, hyperoxic preconditioning, hypoxic-hyperoxic preconditioning, and control group. All animals were anesthetized and mechanically ventilated. We provided preconditioning, then started cardiopulmonary bypass, followed by induced acute myocardial infarction (ischemia 45 min, reperfusion 120 min). We investigated endothelin-1, nitric oxide metabolites, asymmetric dimethylarginine during cardiopulmonary bypass: before ischemia, after ischemia, and after reperfusion. We performed light microscopy of myocardium, kidney, lungs, and gut mucosa. The endothelin-1 level was much higher in the control group than in all preconditioning groups after ischemia. The endothelin-1 even further increased after reperfusion. The total concentration of nitric oxide metabolites was significantly higher after all types of preconditioning compared with the control group. The light microscopy of the myocardium and other organs revealed a diminished damage extent in the hypoxic-hyperoxic preconditioning group as compared to the control group. Hypoxic-hyperoxic preconditioning helps to maintain the balance of nitric oxide metabolites, reduces endothelin-1 hyperproduction, and enforces organ protection.


Surgery ◽  
1996 ◽  
Vol 120 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Hitoshi Yokoyama ◽  
David M. Lingle ◽  
Juan A. Crestanello ◽  
Joseph Kamelgard ◽  
Brian R. Kott ◽  
...  

Author(s):  
Holden W. Hemingway ◽  
Rauchelle E. Richey ◽  
Amy M. Moore ◽  
Austin M. Shokraeifard ◽  
Gabriel C. Thomas ◽  
...  

Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under 3 experimental conditions: 1) thermoneutral control; 2) whole-body heat exposure to increase body core temperature by 1.2 °C; 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s-1), but not for thermoneutral control (140 ± 63 s-1; P < 0.01 vs. heat exposure) nor heat + brachial artery compression (139 ± 60 s-1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9 % vs. post-I/R, 3.8 ± 2.9 %; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9 % vs. post-I/R, 6.1 ± 2.9 %; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8 % vs. post-I/R, 5.8 ± 2.8 %; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.


2003 ◽  
Vol 228 (5) ◽  
pp. 447-453 ◽  
Author(s):  
Yen-Hsu Chen ◽  
Shaw-Fang Yet ◽  
Mark A. Perrella

Heme oxygenase (HO) is a cytoprotective enzyme that degrades heme (a potent oxidant) to generate carbon monoxide (a vasodilatory gas that has anti-inflammatory properties), bilirubin (an antioxidant derived from biliverdin), and iron (sequestered by ferritin). Because of the properties of inducible HO (HO-1) and its products, we hypothesized that HO-1 would play an important role in the regulation of cardiovascular function. In this article, we will review the role of HO-1 in the regulation of blood pressure and cardiac function and highlight previous studies from our laboratory using gene deletion and gene overexpression transgenic approaches in mice. These studies will include the investigation of HO-1 in the setting of hypertension (renovascular), hypotension (endotoxemia), and ischemia/reperfusion injury (heart). In a chronic renovascular hypertension model, hypertension, cardiac hypertrophy, acute renal failure, and acute mortality induced by one kidney–one clip surgery were more severe in HO-1-null mice. In addition, HO-1-null mice with endotoxemia had earlier resolution of hypotension, yet the mortality and the incidence of end-organ damage were higher in the absence of HO-1. In contrast, mice with cardiac-specific overexpression of HO-1 had an improvement in cardiac function, smaller myocardial infarctions, and reduced inflammatory and oxidative damage after coronary artery ligation and reperfusion. Taken together, these studies suggest that an absence of HO-1 has detrimental consequences, whereas overexpression of HO-1 plays a protective role in hypoperfusion and ischemia/reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document