potassium channel opener
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 13)

H-INDEX

30
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3233
Author(s):  
Aleksandra Sek ◽  
Rafal P. Kampa ◽  
Bogusz Kulawiak ◽  
Adam Szewczyk ◽  
Piotr Bednarczyk

Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary β3-β4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately β3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.


Brain ◽  
2021 ◽  
Author(s):  
Mohammad Al-Mahdi Al-Karagholi ◽  
Hashmat Ghanizada ◽  
Cherie Amalie Waldorff Nielsen ◽  
Anders Hougaard ◽  
Messoud Ashina

Abstract Migraine afflicts more than one billion individuals worldwide and is a leading cause of years lived with disability. In about a third of individuals with migraine aura occur in relation to migraine headache. The common pathophysiological mechanisms underlying migraine headache and migraine aura are yet to be identified. Based on recent data, we hypothesized that levcromakalim, an ATP-sensitive potassium channel opener, would trigger migraine attacks with aura in migraine with aura patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lin Zhang ◽  
Shuang Cai ◽  
Song Cao ◽  
Jia Nie ◽  
Wenjing Zhou ◽  
...  

Nowadays, reperfusion is still the most effective treatment for ischemic heart disease. However, cardiac reperfusion therapy would lead to reperfusion injury, which may have resulted from endoplasmic reticulum stress (ERS) during reperfusion. Diazoxide (DZ) is a highly selective mitochondrial adenosine triphosphate-sensitive potassium channel opener. Its protective effect on I/R injury has been confirmed in many organs such as the heart and brain. However, the mechanism of its protective effect has not been fully elucidated. MicroRNAs (miRNAs) are widely involved in pathologies of heart disease. In this study, we found that miR-10a expression was highly upregulated in the myocardial I/R groups, and DZ treatment significantly reduced the expression of miR-10a. More importantly, we found that DZ treatment can moderate ERS via regulation of the miR-10a/IRE1 pathway in the I/R and H/R models, thereby protecting myocardial H/R injury.


Cephalalgia ◽  
2020 ◽  
Vol 40 (7) ◽  
pp. 650-664
Author(s):  
Sarah L Christensen ◽  
Gordon Munro ◽  
Steffen Petersen ◽  
Anmool Shabir ◽  
Inger Jansen-Olesen ◽  
...  

Background Recently, the adenosine triphosphate (ATP) sensitive potassium channel opener levcromakalim was shown to induce migraine attacks with a far higher incidence than any previous provoking agent such as calcitonin gene-related peptide. Here, we show efficacy of ATP sensitive potassium channel inhibitors in two validated rodent models of migraine. Methods In female spontaneous trigeminal allodynic rats, the sensitivity of the frontal region of the head was tested by an electronic von Frey filament device. In mice, cutaneous hypersensitivity was induced by repeated glyceryl trinitrate or levcromakalim injections over nine days, as measured with von Frey filaments in the hindpaw. Release of calcitonin gene-related peptide from dura mater and trigeminal ganglion was studied ex vivo. Results The ATP sensitive potassium channel inhibitor glibenclamide attenuated the spontaneous cephalic hypersensitivity in spontaneous trigeminal allodynic rats and glyceryl trinitrate-induced hypersensitivity of the hindpaw in mice. It also inhibited CGRP release from dura mater and the trigeminal ganglion isolated from spontaneous trigeminal allodynic rats. The hypersensitivity was also diminished by the structurally different ATP sensitive potassium channel inhibitor gliquidone. Mice injected with the ATP sensitive potassium channel opener levcromakalim developed a progressive hypersensitivity that was completely blocked by glibenclamide, confirming target engagement. Conclusion The results suggest that ATP sensitive potassium channel inhibitors could be novel and highly effective drugs in the treatment of migraine.


2020 ◽  
Vol 17 (1) ◽  
pp. 67-73
Author(s):  
Renato Dalpozzo

MaxiPostTM is an interesting 3-fluorooxindole derivative, discovered in the late nineties of the last century as potassium channel opener. Since then, two different research fields were discovered: the discovery of new synthetic methods, especially asymmetric ones, and the in vitro and in vivo tests for its use as a drug for different diseases. This mini-review aims to summarize the state of art in both fields.


2020 ◽  
Vol 88 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Dayalan Sampath ◽  
Philip M. Lam ◽  
Maddy Laoprasert ◽  
Michael J. Diaz ◽  
Nicolas Busquet ◽  
...  

2019 ◽  
Vol 6 (5) ◽  
pp. 310-316
Author(s):  
Nicola Cosentino ◽  
Giampaolo Niccoli ◽  
Francesco Fracassi ◽  
Antonio Rebuzzi ◽  
Piergiuseppe Agostoni ◽  
...  

Abstract Acute ventricular dysfunction (AVD) is a complex condition with substantial morbidity and mortality, still featuring unique therapeutic challenges. Levosimendan is a calcium sensitizer and ATP-dependent potassium channel opener that was developed as an inodilating drug for the treatment of acute heart failure and cardiogenic shock. Differently from other more widely used inotropic agents, levosimendan has some exclusive characteristics, in terms of mechanisms of action, pharmacodynamic profile, and haemodynamic effects. This may have important clinical implications. In particular, in patients with AVD or in patients with pre-existing severe ventricular impairment undergoing planned myocardial stress, the administration of levosimendan before the onset of overt symptoms or before cardiovascular therapeutic procedures may have the potential to bridge the patient through the critical phase. In this review, we will focus on the rationale, the existing experimental data, and the emerging clinical experience supporting an early, even preventive use of levosimendan in severe ventricular dysfunction, beyond its recognized indications.


Sign in / Sign up

Export Citation Format

Share Document