Opioid-induced Respiratory Depression: Are 5-HT4a Receptor Agonists the Cure?

2004 ◽  
Vol 4 (4) ◽  
pp. 197-199 ◽  
Author(s):  
H. Eilers
2018 ◽  
Vol 128 (5) ◽  
pp. 1027-1037 ◽  
Author(s):  
Albert Dahan ◽  
Rutger van der Schrier ◽  
Terry Smith ◽  
Leon Aarts ◽  
Monique van Velzen ◽  
...  

Abstract The ventilatory control system is highly vulnerable to exogenous administered opioid analgesics. Particularly respiratory depression is a potentially lethal complication that may occur when opioids are overdosed or consumed in combination with other depressants such as sleep medication or alcohol. Fatalities occur in acute and chronic pain patients on opioid therapy and individuals that abuse prescription or illicit opioids for their hedonistic pleasure. One important strategy to mitigate opioid-induced respiratory depression is cotreatment with nonopioid respiratory stimulants. Effective stimulants prevent respiratory depression without affecting the analgesic opioid response. Several pharmaceutical classes of nonopioid respiratory stimulants are currently under investigation. The majority acts at sites within the brainstem respiratory network including drugs that act at α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (ampakines), 5-hydroxytryptamine receptor agonists, phospodiesterase-4 inhibitors, D1-dopamine receptor agonists, the endogenous peptide glycyl-glutamine, and thyrotropin-releasing hormone. Others act peripherally at potassium channels expressed on oxygen-sensing cells of the carotid bodies, such as doxapram and GAL021 (Galleon Pharmaceuticals Corp., USA). In this review we critically appraise the efficacy of these agents. We conclude that none of the experimental drugs are adequate for therapeutic use in opioid-induced respiratory depression and all need further study of efficacy and toxicity. All discussed drugs, however, do highlight potential mechanisms of action and possible templates for further study and development.


Pain Medicine ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 992-1004 ◽  
Author(s):  
Lynn Webster ◽  
William K Schmidt

Abstract Objective Although mu-opioid receptor agonists have been the mainstay of analgesic regimens for moderate to severe pain, they are associated with serious side effects, risks, and limitations. We evaluate the most serious risks associated with conventional opioids and compare these with the pharmacology of CYT-1010, a prototypical endomorphin and mu-opioid receptor agonist. Results Addiction and respiratory depression are serious risks of traditional mu-opioid analgesics. Mitigation strategies have been inadequate at addressing the opioid crisis and may interfere with the effective treatment of pain. Improved understanding of mu-opioid receptor biology and the discovery in 1997 of an additional and unique family of endogenous opioid peptides (endomorphins) have provided a pathway for dissociating analgesia from opioid-related adverse events and developing new classes of mu-opioid receptor agonists that use biased signaling and/or target novel sites to produce analgesia with reduced side effect liability. Endomorphin-1 and -2 are endogenous opioid peptides highly selective for mu-opioid receptors that exhibit potent analgesia with reduced side effects. CYT-1010 is a cyclized, D-lysine-containing analog of endomorphin-1 with a novel mechanism of action targeting traditional mu- and exon 11/truncated mu-opioid receptor 6TM variants. CYT-1010 preclinical data have demonstrated reduced abuse potential and analgesic potency exceeding that of morphine. In an initial phase 1 clinical study, CYT-1010 demonstrated significant analgesia vs baseline and no respiratory depression at the dose levels tested. Conclusions CYT-1010 and other novel mu-opioid receptor agonists in clinical development are promising alternatives to conventional opioids that may offer the possibility of safer treatment of moderate to severe pain.


2001 ◽  
Vol 95 (3) ◽  
pp. 740-749 ◽  
Author(s):  
Shinhiro Takeda ◽  
Lars I. Eriksson ◽  
Yuji Yamamoto ◽  
Henning Joensen ◽  
Hiroshi Onimaru ◽  
...  

Background Underlying mechanisms behind opioid-induced respiratory depression are not fully understood. The authors investigated changes in burst rate, intraburst firing frequency, membrane properties, as well as presynaptic and postsynaptic events of respiratory neurons in the isolated brainstem after administration of opioid receptor agonists. Methods Newborn rat brainstem-spinal cord preparations were used and superfused with mu-, kappa-, and delta-opioid receptor agonists. Whole cell recordings were performed from three major classes of respiratory neurons (inspiratory, preinspiratory, and expiratory). Results Mu- and kappa-opioid receptor agonists reduced the spontaneous burst activity of inspiratory neurons and the C4 nerve activity. Forty-two percent of the inspiratory neurons were hyperpolarized and decreased in membrane resistance during opioid-induced respiratory depression. Furthermore, under synaptic block by tetrodotoxin perfusion, similar changes of inspiratory neuronal membrane properties occurred after application of mu- and kappa-opioid receptor agonists. In contrast, resting membrane potential and membrane resistance of preinspiratory and majority of expiratory neurons were unchanged by opioid receptor agonists, even during tetrodotoxin perfusion. Simultaneous recordings of inspiratory and preinspiratory neuronal activities confirmed the selective inhibition of inspiratory neurons caused by mu- and kappa-opioid receptor agonists. Application of opioids reduced the slope of rising of excitatory postsynaptic potentials evoked by contralateral medulla stimulation, resulting in a prolongation of the latency of successive first action potential responses. Conclusions Mu- and kappa-opioid receptor agonists caused reduction of final motor outputs by mainly inhibiting medullary inspiratory neuron network. This inhibition of inspiratory neurons seems to be a result of both a presynaptic and postsynaptic inhibition. The central respiratory rhythm as reflected by the preinspiratory neuron burst rate was essentially unaltered by the agonists.


2018 ◽  
Vol 87 (1) ◽  
pp. 62-64
Author(s):  
Chloe Gui ◽  
Sean Wong

Opioids are considered mainstay treatments for acute and terminal pain. In recent decades, however, overprescription and the increasing prevalence of illicit opioids has propelled North America into a state of “opioid crisis.” Along with the analgesic benefits, opioid use also commonly induces a number of side effects. Respiratory depression is an especially dangerous and potentially lethal example. The development of painkillers with improved safety profiles is thus a priority. Downstream to the mu-opioid receptor, which is responsible for the analgesic effects of opioids, β-arrestin-2 signaling has been suggested to be important for the manifestation of side effects, including respiratory depression. Two novel mu-opioid receptor agonists, TRV130 and PMZ21, have recently been reported to preferentially promote G protein-coupling over β-arrestin-2 signaling, thereby promoting analgesia with reduced side effects. TRV130 has been found in clinical trials to be more potent than morphine but safer in the setting of acute moderate-to-severe pain and is currently under New Drug Application review in the U.S. PMZ21 has shown promising and unique pain-relieving effects in mouse models, but further investigation is warranted to examine whether its therapeutic effects and safety profile are translatable to humans.


2021 ◽  
Author(s):  
Rutger van der Schrier ◽  
Jack D. C. Dahan ◽  
Martijn Boon ◽  
Elise Sarton ◽  
Monique van Velzen ◽  
...  

Opioids may produce life-threatening respiratory depression and death from their actions at the opioid receptors within the brainstem respiratory neuronal network. Since there is an increasing number of conditions where the administration of the opioid receptor antagonist naloxone is inadequate or undesired, there is an increased interest in the development of novel reversal and prevention strategies aimed at providing efficacy close to that of the opioid receptor antagonist naloxone but with fewer of its drawbacks such as its short duration of action and lesser ability to reverse high-affinity opioids, such as carfentanil, or drug combinations. To give an overview of this highly relevant topic, the authors systematically discuss predominantly experimental pharmacotherapies, published in the last 5 yr, aimed at reversal of opioid-induced respiratory depression as alternatives to naloxone. The respiratory stimulants are discussed based on their characteristics and mechanism of action: nonopioid controlled substances (e.g., amphetamine, cannabinoids, ketamine), hormones (thyrotropin releasing hormone, oxytocin), nicotinic acetylcholine receptor agonists, ampakines, serotonin receptor agonists, antioxidants, miscellaneous peptides, potassium channel blockers acting at the carotid bodies (doxapram, ENA001), sequestration techniques (scrubber molecules, immunopharmacotherapy), and opioids (partial agonists/antagonists). The authors argue that none of these often still experimental therapies are sufficiently tested with respect to efficacy and safety, and many of the agents presented have a lesser efficacy at deeper levels of respiratory depression, i.e., inability to overcome apnea, or have ample side effects. The authors suggest development of reversal strategies that combine respiratory stimulants with naloxone. Furthermore, they encourage collaborations between research groups to expedite development of viable reversal strategies of potent synthetic opioid-induced respiratory depression.


2021 ◽  
Author(s):  
Amy Alder

<b>Chronic pain is a major problem worldwide, affecting 1 in 5 New Zealanders resulting in a decreased quality of life for the patient and a large socioeconomic problem costing an estimated $13-$14.5 billion a year. Current therapeutics target the mu opioid receptor (μ receptor) and include drugs such as morphine and fentanyl. While these drugs are highly effective in the treatment of strong acute pain, their long-term use is associated with tolerance to the analgesic effects and increasing rates of side effects such as respiratory depression and constipation. Due to their high abuse liability, they are also known to cause dependence and addiction when prescribed for extended periods. This is believed to have played a role in the opioid crisis in the United States and highlights the need for improved therapeutics for the treatment of chronic pain. </b><p><br></p><p>One mechanism that has been proposed to generate μ receptor agonists for the treatment of chronic pain with reduced analgesic tolerance and safer side effects is the development of G-protein biased agonists. Such agonists selectively activate the canonical G-protein signalling to a greater extent than the non-canonical β-arrestin2 pathway. This is based on previous work in β-arrestin2 knockout mice where the antinociceptive effects were increased, while side effects, including respiratory depression, tolerance, and constipation are reduced, increasing the therapeutic window. In this thesis, we aimed to assess the anti-nociceptive and side effect behavioural profiles of two novel μ receptor agonists, kurkinol (bias = 0.14) and kurkinorin (bias = 0.57), with a varying bias for the G-protein pathway to assess the role of this paradigm. </p><p><br></p> Evaluation of the behavioural profile of kurkinol and kurkinorin revealed that G-protein bias was correlated to increased anti-nociceptive potency and reduced tolerance in wildtype C57BL/6J mice. Furthermore, the anti-nociceptive potency of morphine was increased, and tolerance decreased in in β-arrestin2 knockout mice. While the level of tolerance was reduced for kurkinorin. However, in the chemotherapy-induced model of neuropathic pain, tolerance to kurkinol and kurkinorin developed at the same rate as morphine. Overall this work showed a poor correlation between G-protein bias and therapeutic window. With the G-protein selective kurkinol inducing worse respiratory depression, constipation, and motor coordination impairment compared to kurkinorin. Interestingly, respiratory depressive and constipation effects of kurkinol were not prevented in the β-arrestin2 knockout mice indicating that they are induced through the G-protein pathway. <p><br></p><p>These results highlight the change that has occurred in the biased agonism field over the last 4 years, with the lack of reproducibility of key experiments and poor translation of G-protein biased μ receptor agonists resulting in improved therapeutic windows both clinically and pre-clinically. Moreover, recent research has shown that pathway efficacy (i.e. partial agonism) and not G-protein bias is responsible for the behavioural profiles of compounds previously identified as G-protein biased. We, therefore, decided to further investigate the cell signalling profiles of our two novel agonists to assess them for partial agonism and to assess downstream signalling molecules activated by G-protein and β-arrestin2. </p><div><br></div> This revealed cell-specific inhibition of membrane hyperpolarisation in Hek293 and CHO cells stably expressing the human μ receptor, with kurkinol found to be the most potent in both cell lines, followed by kurkinorin, morphine, and [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO). However, no differences were identified between the μ receptor agonists in the activation of the inwardly rectifying channels in the CHO cell line. The assessment of pCREB (phosphorylated cAMP response-element binding protein) as a β-arrestin2 dependent pathway revealed poor activation by kurkinorin while kurkinol was a potent activator. Bias factors generated from this data showed poor correlations to therapeutic windows. While the differences om CREB phosphorylation was shown to have a stronger correlation to therapeutic windows generated from the behavioural data. <p><br></p><p>Overall this thesis has identified kurkinorin as a μ receptor agonist that induces potent anti-nociception with reduced side effects, without strong-G-protein bias. We also show that the highly selective μ receptor agonist kurkinol has improved anti-nociception with a worse side effect profile adding to the growing body of literature showing bias is not a good predictor in its current state. Furthermore, the discrepancies between cell lines, differential activation of subcellular pathways, and lack of reproducibility between bias equations indicate that the field has massively oversimplified a complex system. Which has, most likely, resulted in the poor translation of in vitro bias factors to clinically available μ receptor agonists for chronic pain. </p>


2021 ◽  
Author(s):  
Amy Alder

<b>Chronic pain is a major problem worldwide, affecting 1 in 5 New Zealanders resulting in a decreased quality of life for the patient and a large socioeconomic problem costing an estimated $13-$14.5 billion a year. Current therapeutics target the mu opioid receptor (μ receptor) and include drugs such as morphine and fentanyl. While these drugs are highly effective in the treatment of strong acute pain, their long-term use is associated with tolerance to the analgesic effects and increasing rates of side effects such as respiratory depression and constipation. Due to their high abuse liability, they are also known to cause dependence and addiction when prescribed for extended periods. This is believed to have played a role in the opioid crisis in the United States and highlights the need for improved therapeutics for the treatment of chronic pain. </b><p><br></p><p>One mechanism that has been proposed to generate μ receptor agonists for the treatment of chronic pain with reduced analgesic tolerance and safer side effects is the development of G-protein biased agonists. Such agonists selectively activate the canonical G-protein signalling to a greater extent than the non-canonical β-arrestin2 pathway. This is based on previous work in β-arrestin2 knockout mice where the antinociceptive effects were increased, while side effects, including respiratory depression, tolerance, and constipation are reduced, increasing the therapeutic window. In this thesis, we aimed to assess the anti-nociceptive and side effect behavioural profiles of two novel μ receptor agonists, kurkinol (bias = 0.14) and kurkinorin (bias = 0.57), with a varying bias for the G-protein pathway to assess the role of this paradigm. </p><p><br></p> Evaluation of the behavioural profile of kurkinol and kurkinorin revealed that G-protein bias was correlated to increased anti-nociceptive potency and reduced tolerance in wildtype C57BL/6J mice. Furthermore, the anti-nociceptive potency of morphine was increased, and tolerance decreased in in β-arrestin2 knockout mice. While the level of tolerance was reduced for kurkinorin. However, in the chemotherapy-induced model of neuropathic pain, tolerance to kurkinol and kurkinorin developed at the same rate as morphine. Overall this work showed a poor correlation between G-protein bias and therapeutic window. With the G-protein selective kurkinol inducing worse respiratory depression, constipation, and motor coordination impairment compared to kurkinorin. Interestingly, respiratory depressive and constipation effects of kurkinol were not prevented in the β-arrestin2 knockout mice indicating that they are induced through the G-protein pathway. <p><br></p><p>These results highlight the change that has occurred in the biased agonism field over the last 4 years, with the lack of reproducibility of key experiments and poor translation of G-protein biased μ receptor agonists resulting in improved therapeutic windows both clinically and pre-clinically. Moreover, recent research has shown that pathway efficacy (i.e. partial agonism) and not G-protein bias is responsible for the behavioural profiles of compounds previously identified as G-protein biased. We, therefore, decided to further investigate the cell signalling profiles of our two novel agonists to assess them for partial agonism and to assess downstream signalling molecules activated by G-protein and β-arrestin2. </p><div><br></div> This revealed cell-specific inhibition of membrane hyperpolarisation in Hek293 and CHO cells stably expressing the human μ receptor, with kurkinol found to be the most potent in both cell lines, followed by kurkinorin, morphine, and [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO). However, no differences were identified between the μ receptor agonists in the activation of the inwardly rectifying channels in the CHO cell line. The assessment of pCREB (phosphorylated cAMP response-element binding protein) as a β-arrestin2 dependent pathway revealed poor activation by kurkinorin while kurkinol was a potent activator. Bias factors generated from this data showed poor correlations to therapeutic windows. While the differences om CREB phosphorylation was shown to have a stronger correlation to therapeutic windows generated from the behavioural data. <p><br></p><p>Overall this thesis has identified kurkinorin as a μ receptor agonist that induces potent anti-nociception with reduced side effects, without strong-G-protein bias. We also show that the highly selective μ receptor agonist kurkinol has improved anti-nociception with a worse side effect profile adding to the growing body of literature showing bias is not a good predictor in its current state. Furthermore, the discrepancies between cell lines, differential activation of subcellular pathways, and lack of reproducibility between bias equations indicate that the field has massively oversimplified a complex system. Which has, most likely, resulted in the poor translation of in vitro bias factors to clinically available μ receptor agonists for chronic pain. </p>


Sign in / Sign up

Export Citation Format

Share Document