Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor

2015 ◽  
Vol 88 (2) ◽  
pp. 335-346 ◽  
Author(s):  
Georgina L. Thompson ◽  
J. Robert Lane ◽  
Thomas Coudrat ◽  
Patrick M. Sexton ◽  
Arthur Christopoulos ◽  
...  
Author(s):  
Jennifer M. Kunselman ◽  
Achla Gupta ◽  
Ivone Gomes ◽  
Lakshmi A. Devi ◽  
Manoj A. Puthenveedu

AbstractMany signal transduction systems have an apparent redundancy built into them, where multiple physiological agonists activate the same receptors. Whether this is true redundancy, or whether this provides as-yet unrecognized specificity in downstream signaling, is not well understood. We address this question using the kappa opioid receptor (KOR), a physiologically relevant G protein-coupled receptor (GPCR) that is activated by multiple members of the Dynorphin family of opioid peptides. We show that, although highly related Dynorphins bind and activate KOR to similar extents on the cell surface, they localize KOR to distinct subcellular compartments, dictate different post-endocytic fates of the receptor, and differentially induce KOR signaling from the degradative pathway. Our results show that seemingly redundant endogenous opioid peptides that are often co-released can in fact fine-tune signaling by differentially regulating the subcellular spatial profile of GPCR localization and signaling.


2021 ◽  
Vol 22 (7) ◽  
pp. 3779
Author(s):  
Anna Abrimian ◽  
Tamar Kraft ◽  
Ying-Xian Pan

There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and β-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of β-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.


2021 ◽  
Vol 118 (16) ◽  
pp. e2000017118
Author(s):  
Ram Kandasamy ◽  
Todd M. Hillhouse ◽  
Kathryn E. Livingston ◽  
Kelsey E. Kochan ◽  
Claire Meurice ◽  
...  

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


1987 ◽  
Vol 72 (s16) ◽  
pp. 90P-91P
Author(s):  
J.R. Thornton ◽  
M.S. Losowsky

1999 ◽  
Vol 277 (6) ◽  
pp. H2442-H2450 ◽  
Author(s):  
Yasushi Takasaki ◽  
Roger A. Wolff ◽  
Grace L. Chien ◽  
Donna M. van Winkle

In rats and rabbits, endogenous opioid peptides participate in ischemic preconditioning. However, it is not known which endogenous opioid(s) can trigger cardioprotection. We examined preconditioning-induced and opioid-induced limitation of cell death in isolated, calcium-tolerant, adult rabbit cardiomyocytes. Cells were subjected to simulated ischemia by pelleting and normothermic hypoxic incubation. Preconditioning was elicited with 15 min of simulated ischemia followed by 15 min of resuspension and reoxygenation. All cells underwent 180 min of simulated ischemia. Cell death was assessed by trypan blue permeability. Morphine protected cells, as did preconditioning; naloxone blocked the preconditioning-induced protection. Exogenous Met5-enkephalin (ME) induced protection, but exogenous β-endorphin did not. ME-induced protection was blocked by the δ-selective antagonist naltrindole. Additionally, two other proenkephalin products, Leu5-enkephalin and Met5-enkephalin-Arg-Phe, provided protection equipotent to ME. These data suggest that one or more proenkephalin products interact with δ-opioid receptors to endogenously trigger opioid-mediated protection.


Sign in / Sign up

Export Citation Format

Share Document