scholarly journals Evidence for orbital order and its relation to superconductivity in FeSe0.4Te0.6

2015 ◽  
Vol 1 (9) ◽  
pp. e1500206 ◽  
Author(s):  
Udai R. Singh ◽  
Seth C. White ◽  
Stefan Schmaus ◽  
Vladimir Tsurkan ◽  
Alois Loidl ◽  
...  

The emergence of nematic electronic states accompanied by a structural phase transition is a recurring theme in many correlated electron materials, including the high-temperature copper oxide– and iron-based superconductors. We provide evidence for nematic electronic states in the iron-chalcogenide superconductor FeSe0.4Te0.6 from quasi-particle scattering detected in spectroscopic maps. The symmetry-breaking states persist above Tc into the normal state. We interpret the scattering patterns by comparison with quasi-particle interference patterns obtained from a tight-binding model, accounting for orbital ordering. The relation to superconductivity and the influence on the coherence length are discussed.

2020 ◽  
Vol 6 (9) ◽  
pp. eaay0443 ◽  
Author(s):  
Ching-Kai Chiu ◽  
T. Machida ◽  
Yingyi Huang ◽  
T. Hanaguri ◽  
Fu-Chun Zhang

The iron-based superconductor FeTexSe1−x is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTexSe1−x. The hybridization of two Majorana vortex modes cannot simply explain this phenomenon. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTexSe1−x. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the zero-bias peaks observed in the experiment; the statistics of the energy peaks off zero energy in our Majorana simulation are in agreement with the experiment. These agreements lead to an important indication of scalable Majorana vortex modes in FeTexSe1−x. Thus, FeTexSe1−x can be one promising platform having scalable Majorana qubits for quantum computing.


1999 ◽  
Vol 588 ◽  
Author(s):  
Yuzo Shinozuka

AbstractThe electronic structure and optical properties of covalent amorphous semiconductors are theoretically studied with special attention to the s-p hybridization in electronic states and the spatial correlation in their mixing. One-dimensional tight binding model is used in which the interatomic transfer energy of an electron between nearest neighbor atoms depends linearly on their interatomic distance. All the electronic states are numerically calculated for a 150-atom system and the ensemble average is taken over 10 samples. Following results have been obtained. As the degree of randomness increases, the degree of hybridization decreases and rearrangements in the covalent bonds take place. The width of the band gap decreases but the gap remains rather long compared to a case where the spatial correlation is neglected. There appears a characteristic peak in the optical absorption spectrum, which reflects central peaks in the partial (s- or p-) density of states in the valence and conduction bands and is related to an electron localization caused by the spatial correlation.


2003 ◽  
Vol 72 (10) ◽  
pp. 2656-2664 ◽  
Author(s):  
Tomoaki Yoshioka ◽  
Hidekatsu Suzuura ◽  
Tsuneya Ando

2009 ◽  
Vol 80 (10) ◽  
Author(s):  
Helmut Eschrig ◽  
Klaus Koepernik

Sign in / Sign up

Export Citation Format

Share Document