scholarly journals Scalable Majorana vortex modes in iron-based superconductors

2020 ◽  
Vol 6 (9) ◽  
pp. eaay0443 ◽  
Author(s):  
Ching-Kai Chiu ◽  
T. Machida ◽  
Yingyi Huang ◽  
T. Hanaguri ◽  
Fu-Chun Zhang

The iron-based superconductor FeTexSe1−x is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTexSe1−x. The hybridization of two Majorana vortex modes cannot simply explain this phenomenon. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTexSe1−x. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the zero-bias peaks observed in the experiment; the statistics of the energy peaks off zero energy in our Majorana simulation are in agreement with the experiment. These agreements lead to an important indication of scalable Majorana vortex modes in FeTexSe1−x. Thus, FeTexSe1−x can be one promising platform having scalable Majorana qubits for quantum computing.

Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. 333-335 ◽  
Author(s):  
Dongfei Wang ◽  
Lingyuan Kong ◽  
Peng Fan ◽  
Hui Chen ◽  
Shiyu Zhu ◽  
...  

The search for Majorana bound states (MBSs) has been fueled by the prospect of using their non-Abelian statistics for robust quantum computation. Two-dimensional superconducting topological materials have been predicted to host MBSs as zero-energy modes in vortex cores. By using scanning tunneling spectroscopy on the superconducting Dirac surface state of the iron-based superconductor FeTe0.55Se0.45, we observed a sharp zero-bias peak inside a vortex core that does not split when moving away from the vortex center. The evolution of the peak under varying magnetic field, temperature, and tunneling barrier is consistent with the tunneling to a nearly pure MBS, separated from nontopological bound states. This observation offers a potential platform for realizing and manipulating MBSs at a relatively high temperature.


2015 ◽  
Vol 1 (9) ◽  
pp. e1500206 ◽  
Author(s):  
Udai R. Singh ◽  
Seth C. White ◽  
Stefan Schmaus ◽  
Vladimir Tsurkan ◽  
Alois Loidl ◽  
...  

The emergence of nematic electronic states accompanied by a structural phase transition is a recurring theme in many correlated electron materials, including the high-temperature copper oxide– and iron-based superconductors. We provide evidence for nematic electronic states in the iron-chalcogenide superconductor FeSe0.4Te0.6 from quasi-particle scattering detected in spectroscopic maps. The symmetry-breaking states persist above Tc into the normal state. We interpret the scattering patterns by comparison with quasi-particle interference patterns obtained from a tight-binding model, accounting for orbital ordering. The relation to superconductivity and the influence on the coherence length are discussed.


2018 ◽  
Vol 67 (20) ◽  
pp. 207401
Author(s):  
Gu Qiang-Qiang ◽  
Wan Si-Yuan ◽  
Yang Huan ◽  
Wen Hai-Hu

2016 ◽  
Vol 30 (13) ◽  
pp. 1642002 ◽  
Author(s):  
C. R. Granstrom ◽  
I. Fridman ◽  
H.-C. Lei ◽  
C. Petrovic ◽  
J. Y. T. Wei

To study how Andreev reflection (AR) occurs between a superconductor and a three-dimensional topological insulator (TI), we use superconducting Nb tips to perform point-contact AR spectroscopy at 4.2 K on as-grown single crystals of Bi2Se3. Scanning tunneling spectroscopy and scanning tunneling microscopy are also used to characterize the superconducting tip and both the doping level and surface condition of the TI sample. The point-contact measurements show clear spectral signatures of AR, as well as a depression of zero-bias conductance with decreasing junction impedance. The latter observation can be attributed to interfacial Rashba spin-orbit coupling, and the presence of bulk bands at the Fermi level in our samples suggests that bulk states of Bi2Se3 are involved in the observed AR.


2003 ◽  
Vol 771 ◽  
Author(s):  
M. Kemerink ◽  
S.F. Alvarado ◽  
P.M. Koenraad ◽  
R.A.J. Janssen ◽  
H.W.M. Salemink ◽  
...  

AbstractScanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current, which can amount to more than an order of magnitude, and can even change the polarity of the dominant charge carrier. As a direct consequence, the single-particle band gap and band alignment of the organic material can be directly obtained from tip height-voltage (z-V) curves, provided that the tip has a sufficiently sharp apex.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hrag Karakachian ◽  
T. T. Nhung Nguyen ◽  
Johannes Aprojanz ◽  
Alexei A. Zakharov ◽  
Rositsa Yakimova ◽  
...  

AbstractThe ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures. Angle-resolved photoelectron spectroscopy (ARPES) and scanning tunneling spectroscopy measurements reveal the development of a width-dependent semiconducting gap driven by quantum confinement effects. Furthermore, ARPES demonstrates an ideal one-dimensional electronic behavior that is realized in a graphene-based environment, consisting of well-resolved subbands, dispersing and non-dispersing along and across the ribbons respectively. Our experimental findings, coupled with theoretical tight-binding calculations, set the grounds for a deeper exploration of quantum confinement phenomena and may open intriguing avenues for new low-power electronics.


Sign in / Sign up

Export Citation Format

Share Document