binding study
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 69)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
F. Akbar Jan ◽  
Wajidullah ◽  
Rahat Ullah ◽  
Salman ◽  
Naimat Ullah ◽  
...  

Abstract Titanium dioxide (TiO2) and Holmium doped Titanium dioxide(Ho-TiO2) nanoparticles (NPs) were synthesized through Sol Gel method. The synthesized NPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Photoluminescence spectroscopy. DNA binding, antibacterial, hemolytic and antioxidant assays of the synthesized nanoparticles were also carried out for finding their therapeutic applications. Successful doping of TiO2 with Ho reduced the band gap from 3.10 to 2.88 eV. SEM and XRD analysis showed that both TiO2 and Ho-TiO2 NPs exhibit tetragonal structure and as a result of doping the morphology of the particles improved and agglomeration reduced. PL emission intensity of TiO2 also reduced with doping.The holmium doped TiO2 were used for the first time against the degradation of Safranin O dye, DNA binding study and biocompatibility assay.The degradation of Safranin O dye over both the catalysts followed first order kinetics. The calculated activation energies for the photo degradation of given dye were found to be 51.7 and 35.2 kJ/mol using TiO2 and Ho-TiO2 NPs respectively. At 180 minutes time interval 84 and 87% dye degradation was observed using pure TiO2 and Ho-TiO2 NPs respectively. High percent degradation of dye was found at low concentration (20 ppm) and at optimal dosage (0.035 g) of both the catalysts. The rate of Safranin O dye degradation was found to increase with increase in temperature and pH of the medium. DNA binding study revealed that Ho-TiO2 NPs are more capable of binding to human DNA. Antibacterial activity study showed that Ho-TiO2 NPs were more efficient against both gram-negative and gram-positive bacterial strains as compared to pure TiO2. Hemolysis assay showed that TiO2 and Ho-TiO2 nanoparticles are non-biocompatible.Ho-TiO2 nanoparticles showed higher anti-oxidant activity as compared to bare TiO2.


Nano Futures ◽  
2021 ◽  
Author(s):  
FAZAL Jan ◽  
Wajid Ullah ◽  
Rahat Ullah ◽  
- Salman ◽  
Naimat Ullah ◽  
...  

Abstract Titanium dioxide (TiO2) and Holmium doped Titanium dioxide(Ho-TiO2) nanoparticles (NPs) were synthesized through Sol Gel method. The synthesized NPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Photoluminescence spectroscopy. DNA binding, antibacterial, hemolytic and antioxidant assays of the synthesized nanoparticles were also carried out for finding their therapeutic applications. Successful doping of TiO2 with Ho reduced the band gap from 3.10 to 2.88 eV. SEM and XRD analysis showed that both TiO2 and Ho-TiO2 NPs exhibit tetragonal structure and as a result of doping the morphology of the particles improved and agglomeration reduced. PL emission intensity of TiO2 also reduced with doping.The holmium doped TiO2 were used for the first time against the degradation of safranin O dye, DNA binding study and biocompatibility assay.The degradation of Safranin Odye over both the catalysts followed first order kinetics. The calculated activation energies for the photo degradation of given dye were found to be 51.7 and 35.2kJ/mol using TiO2 and Ho-TiO2 NPs respectively. At 180 minutes time interval 84% and 87 % dye degradation was observed using pure TiO2 and Ho-TiO2 NPs respectively. High percent degradation of dye was found at low concentration (20ppm) and at optimal dosage (0.035g) of both the catalysts. The rate of Safranin O dye degradation was found to increase with increase in temperature and pH of the medium. DNA binding study revealed that Ho-TiO2 NPs are more capable of binding to human DNA. Antibacterial activity study showed that Ho-TiO2 NPs were more efficient against both gram-negative and gram-positive bacterial strains as compared to pure TiO2. Hemolysis assay showed that TiO2 and Ho-TiO2 nanoparticles are non-biocompatible.Ho-TiO2 nanoparticles showed higher anti-oxidant activity as compared to bare TiO2.


Author(s):  
Anju Saini ◽  
Raj Pal Sharma ◽  
Parmjeet Kaur ◽  
Priti Bansal ◽  
Bal Krishan ◽  
...  

2021 ◽  
pp. 107795
Author(s):  
Antonette Bennett ◽  
Joshua Hull ◽  
Nelly Jolinon ◽  
Julie Tordo ◽  
Katie Moss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document