High Performance and Flexible Aqueous Zinc Batteries Using N-Containing Organic Cathodes

Author(s):  
Guangchi Sun ◽  
Baozhu Yang ◽  
Gui Yin ◽  
Hanping Zhang ◽  
Qi Liu

Aqueous zinc batteries are considered as one of the most promising energy storage systems for large-scale energy storage and wearable electronics, owing to their low cost and intrinsic safety. However, cathode materials that can reversibly host Zn<sup>2+</sup> are still less. Here, we demonstrate that two N-containing organic compounds, hexamethoxy hexaazatrinaphthylene (HMHATN) and hexaazatrinaphthylene (HATN), used as cathodes can exhibit excellent reversible Zn<sup>2+</sup> storage capability with fast kinetics and the high capacity of 542 and 963 mA h g<sup>-1</sup>, respectively. The Zn//HMHATN and Zn//HATN full batteries display the high energy density of 160 and 221.6 W h kg<sup>-1</sup>, respectively, and long-term cycling stability. Further, we investigate the mechanism of Zn<sup>2+</sup> storage in the cathodes. More importantly, the flexible aqueous Zn//HMHATN and Zn//HATN batteries fabricated also have high capacity, long-term cycling life and impressive energy density, displaying its application prospect in wearable electronics. Our work opens a new system for finding organic cathode materials used in aqueous zinc batteries.

2020 ◽  
Author(s):  
Guangchi Sun ◽  
Baozhu Yang ◽  
Gui Yin ◽  
Hanping Zhang ◽  
Qi Liu

Aqueous zinc batteries are considered as one of the most promising energy storage systems for large-scale energy storage and wearable electronics, owing to their low cost and intrinsic safety. However, cathode materials that can reversibly host Zn<sup>2+</sup> are still less. Here, we demonstrate that two N-containing organic compounds, hexamethoxy hexaazatrinaphthylene (HMHATN) and hexaazatrinaphthylene (HATN), used as cathodes can exhibit excellent reversible Zn<sup>2+</sup> storage capability with fast kinetics and the high capacity of 542 and 963 mA h g<sup>-1</sup>, respectively. The Zn//HMHATN and Zn//HATN full batteries display the high energy density of 160 and 221.6 W h kg<sup>-1</sup>, respectively, and long-term cycling stability. Further, we investigate the mechanism of Zn<sup>2+</sup> storage in the cathodes. More importantly, the flexible aqueous Zn//HMHATN and Zn//HATN batteries fabricated also have high capacity, long-term cycling life and impressive energy density, displaying its application prospect in wearable electronics. Our work opens a new system for finding organic cathode materials used in aqueous zinc batteries.


Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. Khalifa ◽  
S. A. El-Safty ◽  
A. Reda ◽  
M. A. Shenashen ◽  
M. M. Selim ◽  
...  

Abstract Modulation of lithium-ion battery (LIB) anodes/cathodes with three-dimensional (3D) topographical hierarchy ridges, surface interfaces, and vortices promotes the power tendency of LIBs in terms of high-energy density and power density. Large-scale meso-geodesics offer a diverse range of spatial LIB models along the geodetically shaped downward/upward curvature, leading to open-ended movement gate options, and diffusible space orientations. Along with the primary 3D super-scalable hierarchy, the formation of structural features of building block egress/ingress, curvature cargo-like sphere vehicles, irregularly located serrated cuticles with abundant V-undulated rigidness, feathery tube pipe conifers, and a band of dagger-shaped needle sticks on anode/cathode electrode surfaces provides high performance LIB modules. The geodetically-shaped anode/cathode design enables the uniqueness of all LIB module configurations in terms of powerful lithium ion (Li+) movement revolving in out-/in- and up-/downward diffusion regimes and in hovering electron density for high-speed discharge rates. The stability of built-in anode//cathode full-scale LIB-model meso-geodesics affords an outstanding long-term cycling performance. The full-cell LIB meso-geodesics offered 91.5% retention of the first discharge capacity of 165.8 mAhg−1 after 2000 cycles, Coulombic efficiency of ~99.6% at the rate of 1 C and room temperature, and high specific energy density of ≈119 Wh kg−1. This LIB meso-geodesic module configuration may align perfectly with the requirements of the energy density limit mandatory for long-term EV driving range and the scale-up commercial manufactures.


2021 ◽  
Author(s):  
Xiao Tang ◽  
Dong Zhou ◽  
Bao Zhang ◽  
Shijian Wang ◽  
Peng Li ◽  
...  

Abstract Non–aqueous rechargeable multivalent metal (Ca, Mg, Al, etc.) batteries are promising for large–scale energy storage due to their low cost. However, their practical applications face formidable challenges owing to low electrochemical reversibility and dendrite growth of multivalent metal anodes, sluggish kinetics of multivalent ion in metal oxide cathodes, and poor electrode compatibility of flammable organic electrolytes. To overcome these intrinsic hurdles, we develop aqueous multivalent ion batteries to replace the prevailing non–aqueous multivalent metal batteries by using wide–window super–concentrated aqueous gel electrolytes, the versatile high–capacity sulfur anodes, and high–voltage metal oxide cathodes. This rationally designed aqueous battery chemistry enables the long–lasting multivalent ion batteries featured with increased high energy density, reversibility and safety. As a demonstration model, a calcium ion−sulfur||metal oxide full cell exhibited a high energy density of 110 Wh kg–1 with outstanding cycling stability. Molecular dynamics modelling and experimental investigations revealed that the side reactions could be significantly restrained through the suppressed water activity and formation of protective inorganic solid electrolyte interphase in the aqueous gel electrolyte. The unique redox chemistry has also been successfully extended to aqueous magnesium ion and aluminum ion−sulfur||metal oxide batteries. This work will boost aqueous multivalent ion batteries for low−cost large–scale energy storage.


2016 ◽  
Vol 9 (3) ◽  
pp. 917-921 ◽  
Author(s):  
Qizhao Huang ◽  
Jing Yang ◽  
Chee Boon Ng ◽  
Chuankun Jia ◽  
Qing Wang

Charge/discharge LiFeO4with a single redox species: a Li-I redox flow lithium battery with strikingly high energy density for large-scale energy storage applications.


2021 ◽  
Vol 34 ◽  
pp. 716-734
Author(s):  
Shuoqing Zhao ◽  
Ziqi Guo ◽  
Kang Yan ◽  
Shuwei Wan ◽  
Fengrong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document