scholarly journals Electronic structure of aqueous solutions: Bridging the gap between theory and experiments

2017 ◽  
Vol 3 (6) ◽  
pp. e1603210 ◽  
Author(s):  
Tuan Anh Pham ◽  
Marco Govoni ◽  
Robert Seidel ◽  
Stephen E. Bradforth ◽  
Eric Schwegler ◽  
...  
Author(s):  
Lucia Pérez Ramírez ◽  
Anthony Boucly ◽  
Florent Saudrais ◽  
F. Bournel ◽  
Jean-Jacques Gallet ◽  
...  

To advance an understanding of key electrochemical and photocatalytic processes that depend on the electronic structure of aqueous solutions, X-ray photoemission spectroscopy has become an invaluable tool, especially when practiced...


2021 ◽  
pp. 30-33

The aim of this work is develop an approach that makes it possible to study the spectral properties and structure of intermolecular hydrogen bonds in aqueous solutions of ethanol formed in systems whose existence in a gaseous medium or an isolated state is practically impossible. This approach bases on the combined use of infrared spectroscopy and molecular dynamics (MD) methods. An analysis give the structural reorganization of water molecules depending on the concentration of ethanol alcohol. It has been shown that the method of molecular dynamics with classical force fields makes it possible to explicitly take into account the molecules of the solvent and solute, and, thus, to investigate hydrogen bonds in the system and to interpret with the experimental data obtained by vibrational spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document