scholarly journals High-tide flooding disrupts local economic activity

2019 ◽  
Vol 5 (2) ◽  
pp. eaau2736 ◽  
Author(s):  
Miyuki Hino ◽  
Samanthe Tiver Belanger ◽  
Christopher B. Field ◽  
Alexander R. Davies ◽  
Katharine J. Mach

Evaluation of observed sea level rise impacts to date has emphasized sea level extremes, such as those from tropical cyclones. Far less is known about the consequences of more frequent high-tide flooding. Empirical analysis of the disruption caused by high-tide floods, also called nuisance or sunny-day floods, is challenging due to the short duration of these floods and their impacts. Through a novel approach, we estimate the effects of high-tide flooding on local economic activity. High-tide flooding already measurably affects local economic activity in Annapolis, Maryland, reducing visits to the historic downtown by 1.7% (95% confidence interval, 1.0 to 2.6%). With 3 and 12 inches of additional sea level rise, high-tide floods would reduce visits by 3.6% (3.2 to 4.0%) and 24% (19 to 28%), respectively. A more comprehensive understanding of the impacts of high-tide flooding can help to guide efficient responses from local adaptations to global mitigation of climate change.

2018 ◽  
Vol 25 (2) ◽  
pp. 753-762 ◽  
Author(s):  
Miguel R. Varela ◽  
Ana R. Patrício ◽  
Karen Anderson ◽  
Annette C. Broderick ◽  
Leon DeBell ◽  
...  

2012 ◽  
Vol 1 (33) ◽  
pp. 19 ◽  
Author(s):  
Sayaka Hoshino ◽  
Miguel Esteban ◽  
Takahito Mikami ◽  
Tomoyuki Takabatake ◽  
Tomoya Shibayama

Sea level rise and an increase in typhoon intensity are two of the expected consequences from future climate change. In the present work a methodology to change the intensity of tropical cyclones in Japan was developed, which can be used to assess the inundation risk to different areas of the country. An example of how this would affect one of the worst typhoons to hit the Tokyo Bay area in the 20th century was thus developed, highlighting the considerable dangers associated with this event, and how current sea defences could be under danger of failing by the end of the 21st century.


Author(s):  
Kwasi Appeaning Addo ◽  
Michael Adeyemi

Climate change and its associated sea-level rise are expected to significantly affect vulnerable coastal communities. Although the extent of the impact will be localised, its assessment will adopt a monitoring approach that applies globally. The topography of the beach, the type of geological material and the level of human intervention will determine the extent of the area to be flooded and the rate at which the shoreline will move inland. Gleefe, a coastal community in Ghana, has experienced frequent flooding in recent times due to the increasing occurrence of storm surge and sea-level rise. This study used available geospatial data and field measurements to determine how the beach topography has contributed to the incidence of flooding at Gleefe. The topography is generally low-lying. Sections of the beach have elevations of around 1 m, which allows seawater to move inland during very high tide. Accelerated sea-level rise as predicted by the Intergovernmental Panel on Climate Change (IPCC) will destroy homes of the inhabitants and inundate the Densu wetlands behind the beach. Destruction of infrastructure will render the inhabitants homeless, whilst flooding of the wetlands will destroy the habitats of migratory birds and some endangered wildlife species such as marine turtle. Effective adaptation measures should be adopted to protect this very important coastal environment, the ecology of the wetlands and the livelihoods of the community dwellers.


2020 ◽  
Author(s):  
Deborah Idier ◽  
François Paris ◽  
Goneri Le Cozannet ◽  
Faiza Boulahya ◽  
Franck Dumas

<p>Sea-level rise (SLR) can modify not only total water levels, but also tidal dynamics. Several studies have investigated the effects of SLR on the tides of the western European continental shelf (mainly the M2 component). Idier et al. (2017) further investigate this issue using a modelling-based approach, considering uniform SLR scenarios from −0.25 m to +10 m above present-day sea level. Assuming that coastal defences are constructed along present-day shorelines, the patterns of change in high tide levels (annual maximum water level) are spatially similar, regardless of the magnitude of sea-level rise (i.e., the sign of the change remains the same, regardless of the SLR scenario) over most of the area (70%). These changes are generally proportional to SLR, as long as SLR remains smaller than 2 m. Depending on the location, they can account for +/−15% of regional SLR. Changes in high tide levels are much less proportional to SLR when flooding is allowed, in particular in the German Bight. However, some areas (e.g., the English Channel) are not very sensitive to this option, meaning that the effects of SLR would be predictable in these areas, even if future coastal defence strategies are ignored.</p><p>In the present work, we focus on the mechanisms driving these tide changes, especially the bed friction damping, the resonance properties and the reflection at the coast, i.e., local and non-local processes. Additional simulations are done to quantify the effect of these mechanisms on tide changes.</p><p> </p><p>Reference: Idier D., Paris F., Le Cozannet G., Boulahya F., Dumas F. (2017) Sea-level rise impacts on the tides of the European Shelf. Continental Shelf Research, 137, 56-71.</p>


Sign in / Sign up

Export Citation Format

Share Document