scholarly journals Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells

2019 ◽  
Vol 5 (3) ◽  
pp. eaav8925 ◽  
Author(s):  
Wu-Qiang Wu ◽  
Zhibin Yang ◽  
Peter N. Rudd ◽  
Yuchuan Shao ◽  
Xuezeng Dai ◽  
...  

The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.5 (aperture, 0.08 cm2) and 20.0% (aperture, 1.1 cm2), with a record-small open-circuit voltage deficit of 0.35 V under AM1.5G illumination. The stabilized PCE reaches 22.6% under 0.3 sun. Anchoring monolayer bilateral amino groups passivates the defects at the perovskite surface and enhances perovskite stability by exposing the linking hydrophobic alkyl chain. Grain boundaries are reinforced by BAA and are more resistant to mechanical bending and electron beam damage. BAA improves the device shelf lifetime to >1000 hours and operation stability to >500 hours under light, with 90% of the initial efficiency retained.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1314 ◽  
Author(s):  
Edison Castro ◽  
Albert Artigas ◽  
Anna Pla-Quintana ◽  
Anna Roglans ◽  
Fang Liu ◽  
...  

The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n) structure is reported. Following optical and electrochemical characterization of the open-cage fullerenes 2a–c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices obtained from 2a–b exhibit competitive power conversion efficiencies (PCEs) and improved open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of 2a–b and the conduction band of the perovskite.


Author(s):  
Pietro Caprioglio ◽  
Fengshuo Zu ◽  
Christian M. Wolff ◽  
Martin Stolterfhot ◽  
Norbert Koch ◽  
...  

Solar RRL ◽  
2021 ◽  
Author(s):  
Nathan Daem ◽  
Jennifer Dewalque ◽  
Felix Lang ◽  
Anthony Maho ◽  
Gilles Spronck ◽  
...  

2019 ◽  
Vol 9 (33) ◽  
pp. 1901631 ◽  
Author(s):  
Pietro Caprioglio ◽  
Martin Stolterfoht ◽  
Christian M. Wolff ◽  
Thomas Unold ◽  
Bernd Rech ◽  
...  

Solar RRL ◽  
2021 ◽  
pp. 2000811
Author(s):  
Miriam Más-Montoya ◽  
David Curiel ◽  
Junke Wang ◽  
Bardo J. Bruijnaers ◽  
René A. J. Janssen

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


Author(s):  
Youhei Numata ◽  
Naoyuki Shibayama ◽  
Tsutomu Miyasaka

Perovskite solar cells (PSC) capable of open-circuit voltage (VOC) over 1.5 V was fabricated based on a formamidinium lead-bromide (FAPbBr3) perovskite absorber film prepared by sequential deposition procedure using dimethylsulfoxide...


Sign in / Sign up

Export Citation Format

Share Document