scholarly journals Possibility of realizing superionic ice VII in external electric fields of planetary bodies

2020 ◽  
Vol 6 (21) ◽  
pp. eaaz2915 ◽  
Author(s):  
Zdenek Futera ◽  
John S. Tse ◽  
Niall J. English

In a superionic (SI) ice phase, oxygen atoms remain crystallographically ordered while protons become fully diffusive as a result of intramolecular dissociation. Ice VII’s importance as a potential candidate for a SI ice phase has been conjectured from anomalous proton diffusivity data. Theoretical studies indicate possible SI prevalence in large-planet mantles (e.g., Uranus and Neptune) and exoplanets. Here, we realize sustainable SI behavior in ice VII by means of externally applied electric fields, using state-of-the-art nonequilibrium ab initio molecular dynamics to witness at first hand the protons’ fluid dance through a dipole-ordered ice VII lattice. We point out the possibility of SI ice VII on Venus, in its strong permanent electric field.

Author(s):  
Boris Merinov ◽  
Sergey Morozov

The proton transport mechanism in superprotonic phases of solid acids is a subject of experimental and theoretical studies for a number of years. Despite this, details of the mechanism still...


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3371 ◽  
Author(s):  
Giuseppe Cassone ◽  
Adriano Sofia ◽  
Jiri Sponer ◽  
A. Marco Saitta ◽  
Franz Saija

Intense electric fields applied on H-bonded systems are able to induce molecular dissociations, proton transfers, and complex chemical reactions. Nevertheless, the effects induced in heterogeneous molecular systems such as methanol-water mixtures are still elusive. Here we report on a series of state-of-the-art ab initio molecular dynamics simulations of liquid methanol-water mixtures at different molar ratios exposed to static electric fields. If, on the one hand, the presence of water increases the proton conductivity of methanol-water mixtures, on the other, it hinders the typical enhancement of the chemical reactivity induced by electric fields. In particular, a sudden increase of the protonic conductivity is recorded when the amount of water exceeds that of methanol in the mixtures, suggesting that important structural changes of the H-bond network occur. By contrast, the field-induced multifaceted chemistry leading to the synthesis of e.g., hydrogen, dimethyl ether, formaldehyde, and methane observed in neat methanol, in 75:25, and equimolar methanol-water mixtures, completely disappears in samples containing an excess of water and in pure water. The presence of water strongly inhibits the chemical reactivity of methanol.


Sign in / Sign up

Export Citation Format

Share Document