scholarly journals A widely diverged locus involved in locomotor adaptation in Heliconius butterflies

2021 ◽  
Vol 7 (32) ◽  
pp. eabh2340
Author(s):  
Yubo Zhang ◽  
Dequn Teng ◽  
Wei Lu ◽  
Min Liu ◽  
Hua Zeng ◽  
...  

Heliconius butterflies have undergone adaptive radiation and therefore serve as an excellent system for exploring the continuum of speciation and adaptive evolution. However, there is a long-lasting paradox between their convergent mimetic wing patterns and rapid divergence in speciation. Here, we characterize a locus that consistently displays high divergence among Heliconius butterflies and acts as an introgression hotspot. We further show that this locus contains multiple genes related to locomotion and conserved in Lepidoptera. In light of these findings, we consider that locomotion traits may be under selection, and if these are heritable traits that are selected for, then they might act as species barriers.


2018 ◽  
Author(s):  
Sarah E. Bush ◽  
Scott M. Villa ◽  
Juan C. Altuna ◽  
Kevin P. Johnson ◽  
Michael D. Shapiro ◽  
...  

ABSTRACTAdaptive radiation occurs when the members of a single lineage evolve different adaptive forms in response to selection imposed by competitors or predators. Iconic examples include Darwin’s finches, Caribbean anoles, and Hawaiian silverswords, all of which live on islands. Parasites, which live on host “islands,” show macroevolutionary patterns consistent with adaptive radiation in response to host-imposed selection. Here we show rapid adaptive divergence of experimentally evolving feather lice in response to preening, the main host defense. We demonstrate that host defense exerts strong phenotypic selection for crypsis in lice transferred to different colored rock pigeons (Columba livia). During four years of experimental evolution (∼60 generations), the lice evolved heritable differences in color. The color differences spanned the phenotypic distribution of congeneric species of lice adapted to other species of pigeons. Our results indicate that host-mediated selection triggers rapid divergence in the adaptive radiation of parasites, which are among the most diverse organisms on earth. Our research suggests that host defense should be included with competition and predation as a major mechanism driving the evolution of biodiversity by adaptive radiation.





2015 ◽  
Vol 64 (3) ◽  
pp. 505-524 ◽  
Author(s):  
Krzysztof M. Kozak ◽  
Niklas Wahlberg ◽  
Andrew F. E. Neild ◽  
Kanchon K. Dasmahapatra ◽  
James Mallet ◽  
...  


2017 ◽  
Author(s):  
Greg M. Walter ◽  
J. David Aguirre ◽  
Mark W. Blows ◽  
Daniel Ortiz-Barrientos

AbstractGenetic correlations between traits can bias adaptation away from optimal phenotypes and constrain the rate of evolution. If genetic correlations between traits limit adaptation to contrasting environments, rapid adaptive divergence across a heterogeneous landscape may be difficult. However, if genetic variance can evolve and align with the direction of natural selection, then abundant allelic variation can promote rapid divergence during adaptive radiation. Here, we explored adaptive divergence among ecotypes of an Australian native wildflower by quantifying divergence in multivariate phenotypes of populations that occupy four contrasting environments. We investigated differences in multivariate genetic variance underlying morphological traits and examined the alignment between divergence in phenotype and divergence in genetic variance. We found that divergence in mean multivariate phenotype has occurred along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits, and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with most of the divergence in phenotype among ecotypes associated with a change in trait combinations that had substantial levels of genetic variance in each ecotype. Overall, our results suggest that divergent natural selection acting on high levels of standing genetic variation might fuel ecotypic differentiation during the early stages of adaptive radiation.



2019 ◽  
Author(s):  
Markus Moest ◽  
Steven M. Van Belleghem ◽  
Jennifer E. James ◽  
Camilo Salazar ◽  
Simon H. Martin ◽  
...  

AbstractNatural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from four major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns across the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilizing selection. Using simulations we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius. Simulated recipient populations show a distinct ‘volcano’ pattern with peaks of increased genetic diversity around the selected target, consistent with patterns found in some populations. Our genomic data provide unprecedented insights into the recent history of selection across the Heliconius adaptive radiation.



2011 ◽  
Vol 221 (5-6) ◽  
pp. 297-308 ◽  
Author(s):  
Laura C. Ferguson ◽  
Luana Maroja ◽  
Chris D. Jiggins


2019 ◽  
pp. 199-243
Author(s):  
Geoffrey E. Hill

A key outcome of evolution by natural selection is adaptation. Since the beginning of the age of genetics, evolutionary biologists have focused on the evolution of nuclear genes as the basis for adaptation. Changes to the mitochondrial genome were long viewed as the result of drift and unimportant to organism fitness. New theory and empirical observations, however, are implicating changes in mitochondrial function as a central component of adaptation related to temperature, oxygen pressure, and diet. Novel mitochondrial function underlying adaptive evolution is a product of interacting mitochondrial and nuclear genes to create changes to the electron transport system, and variation in mitochondrial genotypes has been found to play a key role in such adaptive evolution of eukaryotes. Evidence is emerging that changes in mitochondrial function resulting from mitonuclear coevolution underlie key evolutionary innovations associated with major adaptive radiations including the transition from terrestrial locomotion to flight. I discuss the empirical evidence that supports a key role for mitonuclear coevolution in adaptation and adaptive radiation and the implications for fundamental ideas in ecology and evolution.



Evolution ◽  
2015 ◽  
Vol 69 (9) ◽  
pp. 2452-2467 ◽  
Author(s):  
Christopher M. Anderson ◽  
R. Brian Langerhans


2021 ◽  
Author(s):  
Kyle J. McCulloch ◽  
Aide Macias-Muñoz ◽  
Ali Mortazavi ◽  
Adriana D. Briscoe

AbstractColor vision modifications occur in animals via a process known as spectral tuning. In Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. In the H. melpomene and H. ismenius lineages, the UV2 receptor has been lost. Here we compare how loss of the UV2 photoreceptor has altered the visual system of these butterflies. We compare visual system evolution in three Heliconius butterfly species using a combination of intracellular recordings, ATAC-seq, and antibody staining. We identify several spectral tuning mechanisms including adaptive evolution of opsins, deployment of two types of filtering pigments, and co-expression of two distinct opsins in the same cell. Our data show that opsin gain and loss is driving rapid divergence in Heliconius visual systems via tuning of multiple spectral classes of photoreceptor in distinct lineages, potentially contributing to ongoing speciation in this genus.



2018 ◽  
Author(s):  
Jacob M. Daane ◽  
Alex Dornburg ◽  
Patrick Smits ◽  
Daniel J. MacGuigan ◽  
M. Brent Hawkins ◽  
...  

AbstractAdaptive radiation illustrates the links between ecological opportunity, natural selection, and the generation of biodiversity (1). Central to adaptive radiation is the association between a diversifying lineage and the evolution of key traits that facilitate the utilization of novel environments or resources (2, 3). However, is not clear whether adaptive evolution or historical contingency is more important for the origin of key phenotypic traits in adaptive radiation (4, 5). Here we use targeted sequencing of >250,000 loci across 46 species to examine hypotheses concerning the origin and diversification of key traits in the adaptive radiation of Antarctic notothenioid fishes. Contrary to expectations of adaptive evolution, we show that notothenioids experienced a punctuated burst of genomic diversification and evolved key skeletal modifications before the onset of polar conditions in the Southern Ocean. We show that diversifying selection in pathways associated with human skeletal dysplasias facilitates ecologically important variation in buoyancy among Antarctic notothenioid species, and demonstrate the sufficiency of altered trip11, col1a2 and col1a1 function in zebrafish (Danio rerio) to phenocopy skeletal reduction in Antarctic notothenioids. Rather than adaptation being driven by the cooling of the Antarctic (6), our results highlight the role of exaptation and historical contingency in shaping the adaptive radiation of notothenioids. Understanding the historical and environmental context for the origin of key traits in adaptive radiations provides context in forecasting the effects of climate change on the stability and evolvability of natural populations.



Sign in / Sign up

Export Citation Format

Share Document