scholarly journals The global ocean size spectrum from bacteria to whales

2021 ◽  
Vol 7 (46) ◽  
Author(s):  
Ian A. Hatton ◽  
Ryan F. Heneghan ◽  
Yinon M. Bar-On ◽  
Eric D. Galbraith
Keyword(s):  
2021 ◽  
Author(s):  
Ian A Hatton ◽  
Ryan F Heneghan ◽  
Yinon M Bar-On ◽  
Eric D Galbraith

It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size-classes. Although this community structure has been observed locally among plankton groups, its generality has never been formally tested across all marine life, nor have its impacts by humans been broadly assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find that biomass within most order of magnitude size-classes is indeed remarkably constant, near 1 Gt wet weight (10^15 grams), but that bacteria and whales are markedly above and below this value, respectively. Furthermore, human impacts have significantly truncated the upper one-third of the spectrum. Size-spectrum theory has yet to provide an explanation for what is possibly life's largest scale regularity.


2021 ◽  
Author(s):  
Priscilla Le Mézo ◽  
Jérôme Guiet ◽  
Kim Scherrer ◽  
Daniele Bianchi ◽  
Eric Galbraith

Abstract. Throughout the course of their lives fish ingest food containing essential elements, including nitrogen (N), phosphorus (P) and iron (Fe). Some of these elements are retained in the fish body to build new biomass, which acts as a stored reservoir of nutrients, while the rest is excreted or egested, providing a recycling flux to water. Fishing activity has modified the fish biomass distribution worldwide and consequently may have altered fish-mediated nutrient cycling, but this possibility remains largely unassessed, mainly due to the difficulty of estimating global fish biomass and metabolic rates. Here we quantify the role of commercially-targeted marine fish between 10 g and 100 kg () in the cycling of N, P and Fe in the global ocean, and its change due to fishing activity, by using a global size-spectrum model of marine fish populations calibrated to observations of fish catches. Our results show that the amount of nutrients stored in the global pristine , biomass was generally small compared to the ambient surface nutrient concentrations but significant in the nutrient-poor regions of the world: the North Atlantic for P, the oligotrophic gyres for N and the High Nutrient Low Chlorophyll (HNLC) regions for Fe. Similarly, the rate of nutrient removed from the ocean through fishing is globally small compared to the inputs, but can be important locally especially for Fe in the equatorial Pacific and along the western margin of South America and Africa. This model allowed us to compute the spatial distribution of the cycling of elements by the biomass at pristine and global peak catch state, which is relatively small compared to the estimated primary production demand for nutrients and estimated export production of nutrients. Pristine cycling (excretion + egestion) accounted for less than 2.7 % of the primary productivity demand for N, P and Fe globally. Relative to the export of nutrients, modeled global pristine egestion represents on average 2.3 %, 3.0 % and 1.1–22 % for N, P and Fe (low-high estimates), respectively, with a higher fraction in the low-export oligotrophic tropical gyres. Our study highlights the role of the fraction of the icthyosphere (i.e. does not include non-commercial species such as mesopelagic fish) on nutrient storage and cycling, and the potential role of fishing activities on this cycling, which could be of importance in regions of low nutrient concentration, high fish biomass and/or high productivity demand, and especially at the more local scale for Fe.


2008 ◽  
Vol 10 (3) ◽  
pp. 240-253
Author(s):  
Y. Kamenir ◽  
T. I. Mikhailyuk ◽  
A. F. Popova ◽  
R. B. Kemp ◽  
Z. Dubinsky

1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2004 ◽  
Author(s):  
Carl Wunsch ◽  
Ichiro Fukumori ◽  
Tong Lee ◽  
Dimitris Menemenlis ◽  
David W. Behringer ◽  
...  

2002 ◽  
Author(s):  
Dean H. Roemmich ◽  
Russ E. Davis ◽  
Stephen C. Riser ◽  
W. B. Owens ◽  
Robert L. Molinari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document