scholarly journals Effects of photon recycling and scattering in high-performance perovskite solar cells

2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Changsoon Cho ◽  
Yeoun-Woo Jang ◽  
Seungmin Lee ◽  
Yana Vaynzof ◽  
Mansoo Choi ◽  
...  
2020 ◽  
Author(s):  
Luyao Zheng ◽  
Kai Wang ◽  
Tao Zhu ◽  
Yongrui Yang ◽  
Kai Gu ◽  
...  

Solar Energy ◽  
2019 ◽  
Vol 182 ◽  
pp. 237-244 ◽  
Author(s):  
Ahmed-Ali Kanoun ◽  
Mohammed Benali Kanoun ◽  
Abdelkrim E. Merad ◽  
Souraya Goumri-Said

MRS Bulletin ◽  
2020 ◽  
Vol 45 (6) ◽  
pp. 431-438 ◽  
Author(s):  
Shuang Xiao ◽  
Yu Li ◽  
Shizhao Zheng ◽  
Shihe Yang

Abstract


2021 ◽  
pp. 2008405
Author(s):  
Zhihao Zhang ◽  
Yifeng Gao ◽  
Zicheng Li ◽  
Lu Qiao ◽  
Qiu Xiong ◽  
...  

2021 ◽  
pp. 2104036
Author(s):  
Jun Li ◽  
Lijian Zuo ◽  
Haotian Wu ◽  
Benfang Niu ◽  
Shiqi Shan ◽  
...  

Author(s):  
Jing Ren ◽  
Shurong Wang ◽  
Jianxing Xia ◽  
Chengbo Li ◽  
Lisha Xie ◽  
...  

Defects, inevitably produced in the solution-processed halide perovskite films, can act as charge carrier recombination centers to induce severe energy loss in perovskite solar cells (PSCs). Suppressing these trap states...


2021 ◽  
Vol 7 (10) ◽  
pp. eabe8130
Author(s):  
Shangshang Chen ◽  
Xun Xiao ◽  
Hangyu Gu ◽  
Jinsong Huang

Perovskite-based electronic materials and devices such as perovskite solar cells (PSCs) have notoriously bad reproducibility, which greatly impedes both fundamental understanding of their intrinsic properties and real-world applications. Here, we report that organic iodide perovskite precursors can be oxidized to I2 even for carefully sealed precursor powders or solutions, which markedly deteriorates the performance and reproducibility of PSCs. Adding benzylhydrazine hydrochloride (BHC) as a reductant into degraded precursor solutions can effectively reduce the detrimental I2 back to I−, accompanied by a substantial reduction of I3−-induced charge traps in the films. BHC residuals in perovskite films further stabilize the PSCs under operation conditions. BHC improves the stabilized efficiency of the blade-coated p-i-n structure PSCs to a record value of 23.2% (22.62 ± 0.40% certified by National Renewable Energy Laboratory), and the high-efficiency devices have a very high yield. A stabilized aperture efficiency of 18.2% is also achieved on a 35.8-cm2 mini-module.


Sign in / Sign up

Export Citation Format

Share Document